6 research outputs found

    Bound-state beta-decay of a neutron in a strong magnetic field

    Full text link
    The beta-decay of a neutron into a bound (pe−)(pe^-) state and an antineutrino in the presence of a strong uniform magnetic field (B≳1013B \gtrsim 10^{13} G) is considered. The beta-decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe−)(pe^-) system in a strong magnetic field. For the field strengths 101310^{13} G≲B≲1018 \lesssim B \lesssim10^{18} G the estimate for the ratio of the bound-state decay rate wbw_b and the usual (continuum-state) decay rate wcw_c is derived. It is found that in such strong magnetic fields wb/wc∼0.1−0.4w_b/w_c \sim 0.1-0.4. This is in contrast to the field-free case, where wb/wc≃4.2×10−6w_b/w_c \simeq 4.2 \times 10^{-6} [J. N. Bahcall, Phys. Rev. {\bf 124}, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. {\bf 15}, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. {\bf 13}, 1023 (1987)]. The dependence of the ratio wb/wcw_b/w_c on the magnetic field strength BB exhibits a logarithmic-like behavior. The obtained results can be important for applications in astrophysics and cosmology.Comment: 22 pages (revtex4), 1 figure; v2: more detailed discussion on astrophysical applications in conclusion section, accepted for publication in Phys. Rev.
    corecore