4,497 research outputs found

    Transverse modulational instability of partially incoherent soliton stripes

    Full text link
    Based on the Wigner distribution approach, an analysis of the effect of partial incoherence on the transverse instability of soliton structures in nonlinear Kerr media is presented. It is explicitly shown, that for a Lorentzian incoherence spectrum the partial incoherence gives rise to a damping which counteracts, and tends to suppress, the transverse instability growth. However, the general picture is more complicated and it is shown that the effect of the partial incoherence depends crucially on the form of the incoherence spectrum. In fact, for spectra with finite rms-width, the partial incoherence may even increase both the growth rate and the range of unstable, transverse wave numbers.Comment: 5 pages, submitted to Phys. Rev.

    Physical phase space of lattice Yang-Mills theory and the moduli space of flat connections on a Riemann surface

    Get PDF
    It is shown that the physical phase space of \g-deformed Hamiltonian lattice Yang-Mills theory, which was recently proposed in refs.[1,2], coincides as a Poisson manifold with the moduli space of flat connections on a Riemann surface with (L−V+1)(L-V+1) handles and therefore with the physical phase space of the corresponding (2+1)(2+1)-dimensional Chern-Simons model, where LL and VV are correspondingly a total number of links and vertices of the lattice. The deformation parameter \g is identified with 2πk\frac {2\pi}{k} and kk is an integer entering the Chern-Simons action.Comment: 12 pages, latex, no figure
    • …
    corecore