19 research outputs found

    Machine learning in predicting immediate and long-term outcomes of myocardial revascularization: a systematic review

    Get PDF
    Machine learning (ML) is among the main tools of artificial intelligence and are increasingly used in population and clinical cardiology to stratify cardiovascular risk. The systematic review presents an analysis of literature on using various ML methods (artificial neural networks, random forest, stochastic gradient boosting, support vector machines, etc.) to develop predictive models determining the immediate and long-term risk of adverse events after coronary artery bypass grafting and percutaneous coronary intervention. Most of the research on this issue is focused on creation of novel forecast models with a higher predictive value. It is emphasized that the improvement of modeling technologies and the development of clinical decision support systems is one of the most promising areas of digitalizing healthcare that are in demand in everyday professional activities

    Algorithm for selecting predictors and prognosis of atrial fibrillation in patients with coronary artery disease after coronary artery bypass grafting

    Get PDF
    Aim. To develop an algorithm for selecting predictors and prognosis of atrial fibrillation (AF) in patients with coronary artery disease (CAD) after coronary artery bypass grafting (CABG).Material and methods. This retrospective study included 886 case histories of patients with CAD aged 35 to 81 years (median age, 63 years; 95% confidence interval [63; 64]), who underwent isolated CABG under cardiopulmonary bypass. Eighty-five patients with prior AF were excluded from the study. Two groups of persons were identified, the first of which consisted of 153 (19,1%) patients with newly recorded AF episodes, the second — 648 (80,9%) patients without cardiac arrhythmias. Preoperative clinical and functional status was assessed using 100 factors. Chi-squared, Fisher, and Mann-Whitney tests, as well as univariate logistic regression (LR) were used for data processing and analysis. Multivariate LR and artificial neural networks (ANN) were used to develop predictive models. The boundaries of significant ranges of potential predictors were determined by stepwise assessment of the odds ratio and p-value. The model accuracy was assessed using 4 metrics: area under the ROC-curve (AUC), sensitivity, specificity, and accuracy.Results. A comprehensive analysis of preoperative status of patients made it possible to identify 11 factors with the highest predictive potential, linearly and nonlinearly associated with postoperative AF (PAF). These included age (55-74 years for men and 60-78 years for women), anteroposterior and superior-inferior left atrial dimensions, transverse and longitudinal right atrial dimensions, tricuspid valve regurgitation, left ventricular end systolic dimension >49 mm, RR length of 1000-1100 ms, PQ length of 170-210 ms, QRS length of 50-80 ms, QT >420 ms for men and >440 ms for women, and heart failure with ejection fraction of 4560%. The metrics of the best predictive ANN model were as follows: AUC — 0,75, specificity — 0,73, sensitivity — 0,74, and accuracy — 0,73. These values in best model based on multivariate LR were lower (0,75; 0,7; 0,68 and 0,7, respectively).Conclusion. The developed algorithm for selecting predictors made it possible to verify significant predictive ranges and weight coefficients characterizing their influence on PAF development. The predictive model based on ANN has a higher accuracy than multivariate HR

    Machine learning for assessing the pretest probability of obstructive and non-obstructive coronary artery disease

    Get PDF
    The review presents an analysis of publications on use of machine learning (ML) to assess the pretest probability of obstructive and non-obstructive coronary artery disease (CAD). Data on the high prevalence of non-obstructive CAD among patients referred for coronary angiography are presented, which served as a reason for the development of ML-based models for pretest assessment of coronary anatomy. The use of modern modeling technologies has great potential in verification of obstructive and non-obstructive CAD. It is emphasized that the improvement of prognostic models and their practical implementation is an important element of medical decision making and should be carried out with interdisciplinary cooperation of clinicians and information technology specialists

    Machine learning as a tool for diagnostic and prognostic research in coronary artery disease

    Get PDF
    Machine learning (ML) are the central tool of artificial intelligence, the use of which makes it possible to automate the processing and analysis of large data, reveal hidden or non-obvious patterns and learn a new knowledge. The review presents an analysis of literature on the use of ML for diagnosing and predicting the clinical course of coronary artery disease. We provided information on reference databases, the use of which allows to develop models and validate them (European ST-T Database, Cleveland Heart Disease database, Multi-Ethnic Study of Atherosclerosis, etc.). The advantages and disadvantages of individual ML methods (logistic regression, support vector machines, decision trees, naive Bayesian classifier, k-nearest neighbors) for the development of diagnostic and predictive algorithms are shown. The most promising ML methods include deep learning, which is implemented using multilayer artificial neural networks. It is assumed that the improvement of ML-based models and their introduction into clinical practice will help support medical decision-making, increase the effectiveness of treatment and optimize health care costs

    Russian studies of atmospheric radiation in 2003–2006

    No full text
    corecore