4,420 research outputs found

    Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode

    Get PDF
    We study light transport in phosphor plates of white light-emitting diodes (LEDs). We measure the broadband diffuse transmission through phosphor plates of varying YAG:Ce3+^{3+} density. We distinguish the spectral ranges where absorption, scattering, and re-emission dominate. Using diffusion theory, we derive the transport and absorption mean free paths from first principles. We find that both transport and absorption mean free paths are on the order of the plate thickness. This means that phosphors in commercial LEDs operate well within an intriguing albedo range around 0.7. We discuss how salient parameters that can be derived from first principles control the optical properties of a white LED.Comment: 14 pages, 9 figure

    Matrix metalloproteinase MMP12 is associated with intervertebral disc degeneration

    Get PDF
    INTRODUCTION: Intervertebral disc (IVD) degeneration is associated with low back pain. However, the molecular changes during the degeneration process is not entirely clear. The loss of nucleus pulposus (NP) integrity is one of the early events of the degeneration. Chondrogenic markers, such as SOX9 and aggrecan, have been commonly used to assess the degree of IVD degeneration. Recent transcriptomic studies have proposed several other candidates that may mark IVD degeneration. These include cartilage oligomeric matrix protein (COMP), matrix gla protein (MGP)[1], fibulin 1 (FBLN1) [2], cytokeratin 18 (KRT18) [3], cadherin-2 (CDH2) [3], cytokeratin 19 (KRT19) [2], and Runt-related transcription factor 2 (RUNX2) [4]. Studies also demonstrated that degenerated NP attains a fibrocartilaginous phenotype [5,6] with increased ...postprin

    Perturbative Approach to the Quasinormal Modes of Dirty Black Holes

    Get PDF
    Using a recently developed perturbation theory for uasinormal modes (QNM's), we evaluate the shifts in the real and imaginary parts of the QNM frequencies due to a quasi-static perturbation of the black hole spacetime. We show the perturbed QNM spectrum of a black hole can have interesting features using a simple model based on the scalar wave equation.Comment: Published in PR

    T-violation tests for relativity principles

    Get PDF
    We consider the implications of a violation of the equivalence principle or of Lorentz invariance in the neutrino sector for the T-asymmetry ΔPT≡P(Μα→ΜÎČ)−P(ÎœÎČ→Μα)\Delta P_T \equiv P(\nu_{\alpha} \to \nu_{\beta}) - P(\nu_{\beta} \to \nu_{\alpha}) in a three-flavour framework. We find that additional mixing due to these mechanisms, while obeying all present bounds, can lead to a substantial enhancement, suppression, and/or sign change in ΔPT\Delta P_T for the preferred energies and baselines of a neutrino factory. This in turn allows for the possibility of improving existing constraints by several orders of magnitude.Comment: 2 pages; Talk given at the 4th NuFact '02 Workshop (Neutrino Factories Based On Muon Storage Rings), 1-6 Jul 2002, London, England; To appear in proceeding

    The Phase Diagram and Spectrum of Gauge-Fixed Abelian Lattice Gauge Theory

    Get PDF
    We consider a lattice discretization of a covariantly gauge-fixed abelian gauge theory. The gauge fixing is part of the action defining the theory, and we study the phase diagram in detail. As there is no BRST symmetry on the lattice, counterterms are needed, and we construct those explicitly. We show that the proper adjustment of these counterterms drives the theory to a new type of phase transition, at which we recover a continuum theory of (free) photons. We present both numerical and (one-loop) perturbative results, and show that they are in good agreement near this phase transition. Since perturbation theory plays an important role, it is important to choose a discretization of the gauge-fixing action such that lattice perturbation theory is valid. Indeed, we find numerical evidence that lattice actions not satisfying this requirement do not lead to the desired continuum limit. While we do not consider fermions here, we argue that our results, in combination with previous work, provide very strong evidence that this new phase transition can be used to define abelian lattice chiral gauge theories.Comment: 42 pages, 30 figure

    Valence bond solid formalism for d-level one-way quantum computation

    Full text link
    The d-level or qudit one-way quantum computer (d1WQC) is described using the valence bond solid formalism and the generalised Pauli group. This formalism provides a transparent means of deriving measurement patterns for the implementation of quantum gates in the computational model. We introduce a new universal set of qudit gates and use it to give a constructive proof of the universality of d1WQC. We characterise the set of gates that can be performed in one parallel time step in this model.Comment: 26 pages, 9 figures. Published in Journal of Physics A: Mathematical and Genera
    • 

    corecore