113,891 research outputs found

    Non-linear resonance in nearly geodesic motion in low-mass X-ray binaries

    Full text link
    We have explored the ideas that parametric resonance affects nearly geodesic motion around a black hole or a neutron star, and that it may be relevant to the high frequency (twin) quasi-periodic oscillations occurring in some low-mass X-ray binaries. We have assumed the particles or fluid elements of an accretion disc to be subject to an isotropic perturbation of a hypothetical but rather general form. We find that the parametric resonance is indeed excited close to the radius where epicyclic frequencies of radial and meridional oscillations are in a 2:3 ratio. The location and frequencies of the highest amplitude excitation vary with the strength of the perturbation. These results agree with actual frequency ratios of twin kHz QPOs that have been reported in some black hole candidates, and they may be consistent also with correlation of the twin peaks in Sco X-1.Comment: 5 pages; accepted for publication in PAS

    Temperature-dependent properties of the magnetic order in single-crystal BiFeO3

    Full text link
    We report neutron diffraction and magnetization studies of the magnetic order in multiferroic BiFeO3. In ferroelectric monodomain single crystals, there are three magnetic cycloidal domains with propagation vectors equivalent by crystallographic symmetry. The cycloid period slowly grows with increasing temperature. The magnetic domain populations do not change with temperature except in the close vicinity of the N{\P}eel temperature, at which, in addition, a small jump in magneti- zation is observed. No evidence for the spin-reorientation transitions proposed in previous Raman and dielectric studies is found. The magnetic cycloid is slightly anharmonic for T=5 K. The an- harmonicity is much smaller than previously reported in NMR studies. At room temperature, a circular cycloid is observed, within errors. We argue that the observed anharmonicity provides important clues for understanding electromagnons in BiFeO3.Comment: In Press at PR

    A low-noise ferrite magnetic shield

    Full text link
    Ferrite materials provide magnetic shielding performance similar to commonly used high permeability metals but have lower intrinsic magnetic noise generated by thermal Johnson currents due to their high electrical resistivity. Measurements inside a ferrite shield with a spin-exchange relaxation-free atomic magnetometer reveal a noise level of 0.75 fT Hz^(-1/2), 25 times lower than what would be expected in a comparable mu-metal shield. The authors identify a 1/f component of the magnetic noise due to magnetization fluctuations and derive general relationships for the Johnson current noise and magnetization noise in cylindrical ferromagnetic shields in terms of their conductivity and complex magnetic permeability.Comment: 4 pages, 3 figures. Published in Appl. Phys. Lett.; replacement reflects published wor

    A note on the accuracy of computed ground displacements from strong-motion accelerograms

    Get PDF
    In this paper the accuracy of routine methods for processing strong-motion earthquake accelerograms (Trifunac, 1971, 1972; Hudson et al., 1971) has been tested by comparing displacement curves computed from the twice-integrated accelerograph recordings with displacement curves computed from displacement-meter measurements. The displacement meters have transducers with natural periods typically several seconds long. Agreement is found to be very good, suggesting that the methods used for routine processing of strong-motion accelerograms are quite accurate

    Plasma probe characteristics in low density hydrogen pulsed plasmas

    Get PDF
    Probe theories are only applicable in the regime where the probe's perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas. Indeed, in the case studied here, probe measurements would lead to a large overestimate of the plasma density. In contrast, the simulations of the plasma evolution and the probe characteristics do not suffer from such strict applicability limits. These studies show that probe theory cannot be justified through probe measurements

    Reactive Turbulent Flow in Low-Dimensional, Disordered Media

    Full text link
    We analyze the reactions A+A→∅A+A \to \emptyset and A+B→∅A + B \to \emptyset occurring in a model of turbulent flow in two dimensions. We find the reactant concentrations at long times, using a field-theoretic renormalization group analysis. We find a variety of interesting behavior, including, in the presence of potential disorder, decay rates faster than that for well-mixed reactions.Comment: 6 pages, 4 figures. To appear in Phys. Rev.

    Three-Species Diffusion-Limited Reaction with Continuous Density-Decay Exponents

    Full text link
    We introduce a model of three-species two-particle diffusion-limited reactions A+B -> A or B, B+C -> B or C, and C+A -> C or A, with three persistence parameters (survival probabilities in reaction) of the hopping particle. We consider isotropic and anisotropic diffusion (hopping with a drift) in 1d. We find that the particle density decays as a power-law for certain choices of the persistence parameter values. In the anisotropic case, on one symmetric line in the parameter space, the decay exponent is monotonically varying between the values close to 1/3 and 1/2. On another, less symmetric line, the exponent is constant. For most parameter values, the density does not follow a power-law. We also calculated various characteristic exponents for the distance of nearest particles and domain structure. Our results support the recently proposed possibility that 1d diffusion-limited reactions with a drift do not fall within a limited number of distinct universality classes.Comment: 12 pages in plain LaTeX and four Postscript files with figure

    The false vacuum bubble nucleation due to a nonminimally coupled scalar field

    Full text link
    We study the possibility of forming the false vacuum bubble nucleated within the true vacuum background via the true-to-false vacuum phase transition in curved spacetime. We consider a semiclassical Euclidean bubble in the Einstein theory of gravity with a nonminimally coupled scalar field. In this paper we present the numerical computations as well as the approximate analytical computations. We mention the evolution of the false vacuum bubble after nucleation.Comment: 23 pages, 12 figures, References added, minor correctio

    Wet oxidation of GeSi at (700)C

    Get PDF
    About 500-nm-thick films of Ge0.36Si0.64 and Ge0.28Si0.72 grown epitaxially on (100)Si have been oxidized at 700-degrees-C in wet ambient. A uniform GexSi1-xO2 oxide layer forms with a smooth interface between it and the unoxidized GexSi1-x layer below. The composition and structure of that layer remains unchanged as monitored by backscattering spectrometry or cross-sectional transmission electronic microscopy. The oxide of both samples grows as square root of oxidation duration. The parabolic rate constant increases with the Ge content and is larger than that for wet oxidation of pure Si at the same temperature. The absence of a regime of linear growth at this relatively low temperature indicates a much enhanced linear rate constant
    • …
    corecore