17 research outputs found
Positive and Negative Regulatory Elements Control Expression of the Yeast Retrotransposon Ty3
We report the results of an analysis of Ty3 transcription and identification of Ty3 regions that mediate pheromone and mating-type regulation to coordinate its expression with the yeast life cycle. A set of strains was constructed which was isogenic except for the number of Ty3 elements, which varied from zero to three. Analysis of Ty3 expression in these strains showed that each of the three elements was transcribed and that each element was regulated. Dissection of the long terminal repeat regulatory region by Northern blot analysis of deletion mutants and reporter gene analysis showed that the upstream junction of Ty3 with flanking chromosomal sequences contained a negative control region. A 19-bp fragment (positions 56-74) containing one consensus copy and one 7 of 8-bp match to the pheromone response element (PRE) consensus was sufficient to mediate pheromone induction in either haploid cell type. Deletion of this region, however, did not abolish expression, indicating that other sequences also activate transcription. A 24-bp block immediately downstream of the PRE region contained a sequence similar to the a1-α2 consensus that conferred mating-type control. A single base pair mutation in the region separating the PRE and a1-α2 sequences blocked pheromone induction, but not mating-type control. Thus, the long terminal repeat of Ty3 is a compact, highly regulated, mobile promoter which is responsive to cell type and mating
Sigma elements are position-specific for many different yeast tRNA genes.
We determined the DNA sequence of seventeen sigma elements and flanking regions in order to investigate the extent of the association between the yeast repetitive element, sigma, and tRNA genes. Fifteen of seventeen sigma elements analyzed begin at position -19 to -16 with respect to the 5' end of a tRNA-coding sequence. This region is close to the initiation point of tRNA gene transcription and contains a sequence which is modestly conserved for a number of tRNA genes. Two pairs of identical sigma elements occur as the long terminal repeats of a sequence which, together with flanking sigma elements, has the structural properties of a retrotransposon; this element has been named Ty3 (manuscript submitted). Hybridization analysis of yeast chromosomal DNA separated by orthogonal field alternation gel electrophoresis (OFAGE) showed that Ty3 and isolated sigma elements are distributed over many chromosomes in the yeast genome
Integrase Mediates Nuclear Localization of Ty3
Retroviruses in nondividing cells and yeast retrotransposons must transit the nuclear membrane in order for integration to occur. Mutations in a bipartite basic motif in the carboxyl-terminal domain of the Ty3 integrase (IN) protein were previously shown to block transposition at a step subsequent to 3′-end processing of Ty3 extrachromosomal DNA. In this work, the Ty3 IN was shown to be sufficient to target green fluorescent protein to the nucleolus. Mutations in the bipartite basic motif abrogated this localization. The region containing the motif was shown to be sufficient for nuclear but not subnuclear localization of a heterologous protein. Viruslike particles (VLPs) from cells expressing a Ty3 element defective for nuclear localization were inactive in an in vitro integration assay, suggesting that nuclear entry is required to form active VLPs or that this motif is required for post-nuclear entry steps. Ty3 inserts at transcription initiation sites of genomic tRNA genes and plasmid-borne 5S and U6 RNA genes transcribed by RNA polymerase III. In situ hybridization with Ty3- and Ty3 long terminal repeat-specific probes showed that these elements which are associated with tRNA genes do not colocalize with the ribosomal DNA (rDNA). However, a PCR assay of cells undergoing transposition showed that Ty3 insertion does occur into the 5S genes, which, in yeast, are interspersed with the rDNA and therefore, like Ty3 IN, associated with the nucleolus