786 research outputs found
Explanation of the discrepancy between the measured and atomistically calculated yield stresses in body-centered cubic metals
We propose a mesoscopic model that explains the factor of two to three
discrepancy between experimentally measured yield stresses of BCC metals at low
temperatures and typical Peierls stresses determined by atomistic simulations
of isolated screw dislocations. The model involves a Frank-Read type source
emitting dislocations that become pure screws at a certain distance from the
source and, owing to their high Peierls stress, control its operation. However,
due to the mutual interaction between emitted dislocations the group consisting
of both non-screw and screw dislocations can move at an applied stress that is
about a factor of two to three lower than the stress needed for the glide of
individual screw dislocations.Comment: 4 pages, 2 figures; RevTex4; submitted to PR
Generalized stacking fault energy surfaces and dislocation properties of aluminum
We have employed the semidiscrete variational generalized Peierls-Nabarro
model to study the dislocation core properties of aluminum. The generalized
stacking fault energy surfaces entering the model are calculated by using
first-principles Density Functional Theory (DFT) with pseudopotentials and the
embedded atom method (EAM). Various core properties, including the core width,
splitting behavior, energetics and Peierls stress for different dislocations
have been investigated. The correlation between the core energetics and
dislocation character has been explored. Our results reveal a simple
relationship between the Peierls stress and the ratio between the core width
and atomic spacing. The dependence of the core properties on the two methods
for calculating the total energy (DFT vs. EAM) has been examined. The EAM can
give gross trends for various dislocation properties but fails to predict the
finer core structures, which in turn can affect the Peierls stress
significantly (about one order of magnitude).Comment: 25 pages, 12 figure
Electronic Selection Rules Controlling Dislocation Glide in bcc Metals
The validity of the structure-property relationships governing the
deformation behavior of bcc metals was brought into question with recent {\it
ab initio} density functional studies of isolated screw dislocations in Mo and
Ta. These existing relationships were semiclassical in nature, having grown
from atomistic investigations of the deformation properties of the groups V and
VI transition metals. We find that the correct form for these
structure-property relationships is fully quantum mechanical, involving the
coupling of electronic states with the strain field at the core of long
screw dislocations.Comment: 4 pages, 2 figure
Screw dislocation in zirconium: An ab initio study
Plasticity in zirconium is controlled by 1/3 screw dislocations
gliding in the prism planes of the hexagonal close-packed structure. This
prismatic and not basal glide is observed for a given set of transition metals
like zirconium and is known to be related to the number of valence electrons in
the d band. We use ab initio calculations based on the density functional
theory to study the core structure of screw dislocations in zirconium.
Dislocations are found to dissociate in the prism plane in two partial
dislocations, each with a pure screw character. Ab initio calculations also
show that the dissociation in the basal plane is unstable. We calculate then
the Peierls barrier for a screw dislocation gliding in the prism plane and
obtain a small barrier. The Peierls stress deduced from this barrier is lower
than 21 MPa, which is in agreement with experimental data. The ability of an
empirical potential relying on the embedded atom method (EAM) to model
dislocations in zirconium is also tested against these ab initio calculations
Atomic structure of (111) twist grain boundaries in f.c.c. metals
In this paper we have studied the atomic structures of (111) twist boundaries and investigated the applicability of the structural unit model which has previously been established for tilt boundaries and (001) twist boundaries. The calculations were carried out using two different descriptions of interatomic forces. A pair potential for aluminium, for which the calculations were made at constant volume, and a many-body potential for gold, for which the calculations were performed at constant pressure. The atomic structures of all the boundaries studied were found to be very similar for both the descriptions of atomic interactions. This suggests that the principal features of the structure of (111) twist boundaries found in this study are common to all f.c.c. metals. At the same time it supports the conclusion that calculations employing pair potentials are fully capable of revealing the generic features of the structure of grain boundaries in metals. The results obtained here, indeed, show that structures of all the boundaries with misorientations between 0° and 21.79° (Σ=21) are composed of units of the ideal lattice and/or the 1/6<112>stacking fault on (111) planes, and units of the Σ=21 boundary. Similarly, structures of boundaries with misorientations between 21.79° and 27.8° (Σ=13), 27.8° and 38.21° (Σ=7) and 38.21° and 60° (Σ=3) can all be regarded as decomposed into units of the corresponding delimiting boundaries. Therefore we conclude that the atomic structure of (111) twist boundaries can well be understood in the framework of the structural unit model. A related aspect analysed here in detail is the dislocation content of these boundaries. This study shows both the general relation between dislocation content and atomic structure of the boundaries, which is an integral part of the structural unit model, and features specific to the dislocation networks present in the (111) twist boundaries. Furthermore, the dislocation content revealed by the atomistic calculations can be compared in several cases with transmission electron microscope (TEM) observations and the results are discussed in this context
Dislocation core field. II. Screw dislocation in iron
The dislocation core field, which comes in addition to the Volterra elastic
field, is studied for the screw dislocation in alpha-iron. This core
field, evidenced and characterized using ab initio calculations, corresponds to
a biaxial dilatation, which we modeled within the anisotropic linear
elasticity. We show that this core field needs to be considered when extracting
quantitative information from atomistic simulations, such as dislocation core
energies. Finally, we look at how dislocation properties are modified by this
core field, by studying the interaction between two dislocations composing a
dipole, as well as the interaction of a screw dislocation with a carbon atom
- …