23 research outputs found

    On exact solutions for quantum particles with spin S= 0, 1/2, 1 and de Sitter event horizon

    Full text link
    Exact wave solutions for particles with spin 0, 1/2 and 1 in the static coordinates of the de Sitter space-time model are examined in detail. Firstly, for a scalar particle, two pairs of linearly independent solutions are specified explicitly: running and standing waves. A known algorithm for calculation of the reflection coefficient RϵjR_{\epsilon j} on the background of the de Sitter space-time model is analyzed. It is shown that the determination of R_{\epsilon j} requires an additional constrain on quantum numbers \epsilon \rho / \hbar c >> j, where \rho is a curvature radius. When taken into account of this condition, the R_{\epsilon j} vanishes identically. It is claimed that the calculation of the reflection coefficient R_{\epsilon j} is not required at all because there is no barrier in an effective potential curve on the background of the de Sitter space-time. The same conclusion holds for arbitrary particles with higher spins, it is demonstrated explicitly with the help of exact solutions for electromagnetic and Dirac fields.Comment: 30 pages. This paper is an updated and more comprehensive version of the old paper V.M. Red'kov. On Particle penetrating through de Sitter horizon. Minsk (1991) 22 pages Deposited in VINITI 30.09.91, 3842 - B9
    corecore