412 research outputs found

    Superconductor-insulator duality for the array of Josephson wires

    Full text link
    We propose novel model system for the studies of superconductor-insulator transitions, which is a regular lattice, whose each link consists of Josephson-junction chain of N1N \gg 1 junctions in sequence. The theory of such an array is developed for the case of semiclassical junctions with the Josephson energy EJE_J large compared to the junctions's Coulomb energy ECE_C. Exact duality transformation is derived, which transforms the Hamiltonian of the proposed model into a standard Hamiltonian of JJ array. The nature of the ground state is controlled (in the absence of random offset charges) by the parameter qN2exp(8EJ/EC)q \approx N^2 \exp(-\sqrt{8E_J/E_C}), with superconductive state corresponding to small q<qcq < q_c . The values of qcq_c are calculated for magnetic frustrations f=0f= 0 and f=12f= \frac12. Temperature of superconductive transition Tc(q)T_c(q) and q<qcq < q_c is estimated for the same values of ff. In presence of strong random offset charges, the T=0 phase diagram is controlled by the parameter qˉ=q/N\bar{q} = q/\sqrt{N}; we estimated critical value qˉc\bar{q}_c.Comment: 5 pages, 2 figure

    Coherent transport in Josephson-Junction rhombi chain with quenched disorder

    Full text link
    We consider a chain of Josephson-junction rhombi (proposed originally by Doucot and Vidal) in quantum regime. In a regular chain with no disorder in the maximally frustrated case when magnetic flux through each rhombi \Phi_r is equal to one half of superconductive flux quantum \Phi_0, Josephson current is due to correlated transport of pairs of Cooper pairs, i.e. charge is quantized in units of 4e4e. Sufficiently strong deviation \delta\Phi =|\Phi_r-\Phi_0/2| > \delta\Phi^c from the maximally frustrated point brings the system back to usual 2e2e-quantized supercurrent. For a regular chain \delta\Phi^c was calculated by us previously. Here we present detailed analysis of the effect of quenched disorder (random stray charges and random fluxes piercing rhombi) on the pairing effect.Comment: 21 pages, 5 figure

    Theory of 4e versus 2e supercurrent in frustrated Josepshon-junction rhombi chain

    Full text link
    We consider a chain of Josepshon-junction rhombi (proposed originally in \cite{Doucot}) in quantum regime, and in the realistic case when charging effects are determined by junction capacitances. In the maximally frustrated case when magnetic flux through each rhombi Φr\Phi_r is equal to one half of superconductive flux quantum Φ0\Phi_0, Josepshon current is due to correlated transport of {\em pairs of Cooper pairs}, i.e. charge is quantized in units of 4e4e. Sufficiently strong deviation δΦΦrΦ0/2>δΦc \delta\Phi \equiv |\Phi_r-\Phi_0/2| > \delta\Phi^c from the maximally frustrated point brings the system back to usual 2e2e-quantized supercurrent. We present detailed analysis of Josepshon current in the fluctuation-dominated regime (sufficiently long chains) as function of the chain length, EJ/ECE_J/E_C ratio and flux deviation δΦ \delta\Phi. We provide estimates for the set of parameters optimized for the observation of 4e4e-supercurrent.Comment: 23 pages, 9 figure
    corecore