2,936 research outputs found

    Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots

    Full text link
    We have studied spin-flip transitions between Zeeman sublevels in GaAs electron quantum dots. Several different mechanisms which originate from spin-orbit coupling are shown to be responsible for such processes. It is shown that spin-lattice relaxation for the electron localized in a quantum dot is much less effective than for the free electron. The spin-flip rates due to several other mechanisms not related to the spin-orbit interaction are also estimated.Comment: RevTex, 7 pages (extended journal version, PRB, in press

    Coulomb Blockade due to Quantum Phase-Slips Illustrated with Devices

    Full text link
    In order to illustrate the emergence of Coulomb blockade from coherent quantum phase-slip processes in thin superconducting wires, we propose and theoretically investigate two elementary setups, or "devices". The setups are derived from Cooper-pair box and Cooper-pair transistor, so we refer to them as QPS-box and QPS-transistor, respectively. We demonstrate that the devices exhibit sensitivity to a charge induced by a gate electrode, this being the main signature of Coulomb blockade. Experimental realization of these devices will unambiguously prove the Coulomb blockade as an effect of coherence of phase-slip processes. We analyze the emergence of discrete charging in the limit strong phase-slips. We have found and investigated six distinct regimes that are realized depending on the relation between three characteristic energy scales: inductive and charging energy, and phase-slip amplitude. For completeness, we include a brief discussion of dual Josephson-junction devices

    Inelastic Interaction Corrections and Universal Relations for Full Counting Statistics

    Full text link
    We analyze in detail the interaction correction to Full Counting Statistics (FCS) of electron transfer in a quantum contact originating from the electromagnetic environment surrounding the contact. The correction can be presented as a sum of two terms, corresponding to elastic/inelastic electron transfer. Here we primarily focus on the inelastic correction. For our analysis, it is important to understand more general -- universal -- relations imposed on FCS only by quantum mechanics and statistics with no regard for a concrete realization of a contact. So we derive and analyze these relations. We reveal that for FCS the universal relations can be presented in a form of detailed balance. We also present several useful formulas for the cumulants. To facilitate the experimental observation of the effect, we evaluate cumulants of FCS at finite voltage and temperature. Several analytical results obtained are supplemented by numerical calculations for the first three cumulants at various transmission eigenvalues.Comment: 10 pages, 3 figure

    Fully Overheated Single-Electron Transistor

    Full text link
    We consider the fully overheated single-electron transistor, where the heat balance is determined entirely by electron transfers. We find three distinct transport regimes corresponding to cotunneling, single-electron tunneling, and a competition between the two. We find an anomalous sensitivity to temperature fluctuations at the crossover between the two latter regimes that manifests in an exceptionally large Fano factor of current noise.Comment: 6 pages, 3 figures, includes Appendi
    • …
    corecore