17 research outputs found

    Rolling in the Higgs Model and Elliptic Functions

    Full text link
    Asymptotic methods in nonlinear dynamics are used to improve perturbation theory results in the oscillations regime. However, for some problems of nonlinear dynamics, particularly in the case of Higgs (Duffing) equation and the Friedmann cosmological equations, not only small oscillations regime is of interest but also the regime of rolling (climbing), more precisely the rolling from a top (climbing to a top). In the Friedman cosmology, where the slow rolling regime is often used, the rolling from a top (not necessary slow) is of interest too. In the present work a method for approximate solution to the Higgs equation in the rolling regime is presented. It is shown that in order to improve perturbation theory in the rolling regime turns out to be effective not to use an expansion in trigonometric functions as it is done in case of small oscillations but use expansions in hyperbolic functions instead. This regime is investigated using the representation of the solution in terms of elliptic functions. An accuracy of the corresponding approximation is estimated.Comment: Latex, 36 Pages, 8 figures, typos correcte

    Derivation of the particle dynamics from kinetic equations

    Full text link
    We consider the microscopic solutions of the Boltzmann-Enskog equation discovered by Bogolyubov. The fact that the time-irreversible kinetic equation has time-reversible microscopic solutions is rather surprising. We analyze this paradox and show that the reversibility or irreversibility property of the Boltzmann-Enskog equation depends on the considered class of solutions. If the considered solutions have the form of sums of delta-functions, then the equation is reversible. If the considered solutions belong to the class of continuously differentiable functions, then the equation is irreversible. Also, we construct the so called approximate microscopic solutions. These solutions are continuously differentiable and they are reversible on bounded time intervals. This analysis suggests a way to reconcile the time-irreversible kinetic equations with the time-reversible particle dynamics. Usually one tries to derive the kinetic equations from the particle dynamics. On the contrary, we postulate the Boltzmann-Enskog equation or another kinetic equation and treat their microscopic solutions as the particle dynamics. So, instead of the derivation of the kinetic equations from the microdynamics we suggest a kind of derivation of the microdynamics from the kinetic equations.Comment: 18 pages; some misprints have been corrected, some references have been adde

    Quantization of the Riemann Zeta-Function and Cosmology

    Get PDF
    Quantization of the Riemann zeta-function is proposed. We treat the Riemann zeta-function as a symbol of a pseudodifferential operator and study the corresponding classical and quantum field theories. This approach is motivated by the theory of p-adic strings and by recent works on stringy cosmological models. We show that the Lagrangian for the zeta-function field is equivalent to the sum of the Klein-Gordon Lagrangians with masses defined by the zeros of the Riemann zeta-function. Quantization of the mathematics of Fermat-Wiles and the Langlands program is indicated. The Beilinson conjectures on the values of L-functions of motives are interpreted as dealing with the cosmological constant problem. Possible cosmological applications of the zeta-function field theory are discussed.Comment: 14 pages, corrected typos, references and comments adde

    Derivation of the Boltzmann equation and entropy production in functional mechanics

    Full text link
    A derivation of the Boltzmann equation from the Liouville equation by the use of the Grad limiting procedure in a finite volume is proposed. We introduce two scales of space-time: macro- and microscale and use the BBGKY hierarchy and the functional formulation of classical mechanics. According to the functional approach to mechanics, a state of a system of particles is formed from the measurements, which are rational numbers. Hence, one can speak about the accuracy of the initial probability density function in the Liouville equation. We assume that the initial data for the microscopic density functions are assigned by the macroscopic one (so, one can say about a kind of hierarchy and subordination of the microscale to the macroscale) and derive the Boltzmann equation, which leads to the entropy production.Comment: 14 page

    Randomness in Classical Mechanics and Quantum Mechanics

    Full text link
    The Copenhagen interpretation of quantum mechanics assumes the existence of the classical deterministic Newtonian world. We argue that in fact the Newton determinism in classical world does not hold and in classical mechanics there is fundamental and irreducible randomness. The classical Newtonian trajectory does not have a direct physical meaning since arbitrary real numbers are not observable. There are classical uncertainty relations, i.e. the uncertainty (errors of observation) in the determination of coordinate and momentum is always positive (non zero). A "functional" formulation of classical mechanics was suggested. The fundamental equation of the microscopic dynamics in the functional approach is not the Newton equation but the Liouville equation for the distribution function of the single particle. Solutions of the Liouville equation have the property of delocalization which accounts for irreversibility. The Newton equation in this approach appears as an approximate equation describing the dynamics of the average values of the position and momenta for not too long time intervals. Corrections to the Newton trajectories are computed. An interpretation of quantum mechanics is attempted in which both classical and quantum mechanics contain fundamental randomness. Instead of an ensemble of events one introduces an ensemble of observers.Comment: 12 pages, Late
    corecore