187 research outputs found

    Evolution of sexual dimorphism in birds: Ecological patterns current selection and ontogenetic variation

    Get PDF

    Stress and Developmental Stability: Vegetation Removal Causes Increased Fluctuating Asymmetry in Shrews

    Get PDF
    Environmental stress can increase phenotypic variation in populations by affecting developmental stability of individuals. While such increase in variation results from individual differences in ability to buffer stress, groups of individuals and different traits may have different sensitivity to stressful conditions. For example, the sex that is under stronger directional selection for faster growth may be more sensitive to stressful conditions during development. On an individual level, stress-induced variation in a trait may be related to the strength of stabilizing selection that acts on the trait. We experimentally examined sensitivity of mandibular development to stress in a free-living population of common shrews (Sorex cinereus), a short-lived insectivore mammal with very limited dispersal and nearly continuous foraging activity. We found a strong increase in asymmetry in shrews born under stressful conditions. Increased asymmetry was associated with lower physiological condition in both control and stressed populations, although the effect of asymmetry on fitness was more pronounced under stressful conditions. Males\u27 developmental stability was more sensitive to stressful conditions than developmental stability of females, suggesting that their apparently faster and more variable growth is more sensitive to stress than is growth of females. Mandible traits differed in their sensitivity to environmental changes. Preliminary results suggest that this differential sensitivity is proportional to the degree of developmental and functional morphological integration among mandibular traits

    Environmental induction and phenotypic retention of adaptive maternal effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The origin of complex adaptations is one of the most controversial questions in biology. Environmental induction of novel phenotypes, where phenotypic retention of adaptive developmental variation is enabled by organismal complexity and homeostasis, can be a starting point in the evolution of some adaptations, but empirical examples are rare. Comparisons of populations that differ in historical recurrence of environmental induction can offer insight into its evolutionary significance, and recent colonization of North America by the house finch (<it>Carpodacus mexicanus</it>) provides such an opportunity.</p> <p>Results</p> <p>In both native (southern Arizona) and newly established (northern Montana, 18 generations) populations, breeding female finches exhibit the same complex adaptation – a sex-bias in ovulation sequence – in response to population-specific environmental stimulus of differing recurrence. We document that, in the new population, the adaptation is induced by a novel environment during females' first breeding and is subsequently retained across breeding attempts. In the native population, first-breeding females expressed a precise adaptive response to a recurrent environmental stimulus without environmental induction. We document strong selection on environmental cue recognition in both populations and find that rearrangement of the same proximate mechanism – clustering of oocytes that become males and females – can enable an adaptive response to distinct environmental stimuli.</p> <p>Conclusion</p> <p>The results show that developmental plasticity induced by novel environmental conditions confers significant fitness advantages to both maternal and offspring generations and might play an important role not only in the successful establishment of this invasive species across the widest ecological range of extant birds, but also can link environmental induction and genetic inheritance in the evolution of novel adaptations.</p

    Evolution of Morphological Integration. I. Functional Units Channel Stress-Induced Variation in Shrew Mandibles

    Get PDF
    Stress-induced deviations from normal development are often assumed to be random, yet their accumulation and expression can be influenced by patterns of morphological integration within an organism. We studied within-individual developmental variation ( fluctuating asymmetry) in the mandible of four shrew species raised under normal and extreme environments. Patterns of among-individual variation and fluctuating asymmetry were strongly concordant in traits that were involved in the attachment of the same muscles (i.e., functionally integrated traits), and fluctuating asymmetry was closely integrated among these traits, implying direct developmental interactions among traits involved in the same function. Stress-induced variation was largely confined to the directions delimited by functionally integrated groups of traits in the pattern that was concordant with species divergence-species differed most in the same traits that were most sensitive to stress within each species. These results reveal a strong effect of functional complexes on directing and incorporating stress-induced variation during development and might explain the historical persistence of sets of traits involved in the same function in shrew jaws despite their high sensitivity to environmental variation

    Age-Biased Spring Dispersal in Male Wild Turkeys

    Get PDF

    Habitat Sampling and Habitat Selection by Female Wild Turkeys: Ecological Correlates and Reproductive Consequences

    Get PDF
    Habitat sampling can allow much more effective habitat selection for longterm activities such as nesting and may be directly linked to fitness. We studied the process of habitat sampling and selection in female Wild Turkeys (Meleagris gallopavo) in the Arkansas Ozarks. In particular, we tested the prediction that movements prior to selecting nesting habitat correlate with the quality of selected habitat. Our results supported the prediction that greater habitat sampling (as reflected by greater area covered prior to nesting) allows acquisition of better nesting habitat; greater movements were correlated with choice of better nesting sites with more cover that allow higher nest survival. Attributes of individual birds and habitat dispersion influenced movement patterns and access to quality habitats. In addition, extent of habitat sampling early in the season correlated with reproductive performance by affecting renesting. Distance between subsequent nest locations was inversely related to the movements early in the season and also depended upon length of incubation before nest predation. Females that sampled larger areas after depredation of their first nest and did so outside of their prenesting range were more successful than other females

    Evolution of Morphological Integration: Developmental Accommodation of Stress-Induced Variation

    Get PDF
    Extreme environmental change during growth often results in an increase in developmental abnormalities in the morphology of an organism. The evolutionary significance of such stress-induced variation depends on the recurrence of a stressor and on the degree to which developmental errors can be accommodated by an organism\u27s ontogeny without significant loss of function. We subjected populations of four species of soricid shrews to an extreme environment during growth and measured changes in the patterns of integration and accommodation of stress-induced developmental errors in a complex of mandibular traits. Adults that grew under an extreme environment had lower integration of morphological variation among mandibular traits and highly elevated fluctuating asymmetry in these traits, compared to individuals that grew under the control conditions. However, traits differed strongly in the magnitude of response to a stressor - traits within attachments of the same muscle (functionally integrated traits) had lower response and changed their integration less than other traits. Cohesiveness in functionally integrated complexes of traits under stress was maintained by close covariation of their developmental variation. Such developmental accommodation of stress-induced variation might enable the individual\u27s functioning and persistence under extreme environmental conditions and thus provides a link between individual adaptation to stress and the evolution of stress resistance

    Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics

    Full text link
    A continuous time model for multiagent systems governed by reinforcement learning with scale-free memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment of time. The contribution of the rewards in the past to the agent current perception of action value is described by an integral operator with a power-law kernel. Finally a fractional differential equation governing the system dynamics is obtained. The agents are considered to interact with one another implicitly via the reward of one agent depending on the choice of the other agents. The pairwise interaction model is adopted to describe this effect. As a specific example of systems with non-transitive interactions, a two agent and three agent systems of the rock-paper-scissors type are analyzed in detail, including the stability analysis and numerical simulation. Scale-free memory is demonstrated to cause complex dynamics of the systems at hand. In particular, it is shown that there can be simultaneously two modes of the system instability undergoing subcritical and supercritical bifurcation, with the latter one exhibiting anomalous oscillations with the amplitude and period growing with time. Besides, the instability onset via this supercritical mode may be regarded as "altruism self-organization". For the three agent system the instability dynamics is found to be rather irregular and can be composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur

    Entomological Surveillance of Behavioural Resilience and Resistance in Residual Malaria Vector Populations.

    Get PDF
    The most potent malaria vectors rely heavily upon human blood so they are vulnerable to attack with insecticide-treated nets (ITNs) and indoor residual spraying (IRS) within houses. Mosquito taxa that can avoid feeding or resting indoors, or by obtaining blood from animals, mediate a growing proportion of the dwindling transmission that persists as ITNs and IRS are scaled up. Increasing frequency of behavioural evasion traits within persisting residual vector systems usually reflect the successful suppression of the most potent and vulnerable vector taxa by IRS or ITNs, rather than their failure. Many of the commonly observed changes in mosquito behavioural patterns following intervention scale-up may well be explained by modified taxonomic composition and expression of phenotypically plastic behavioural preferences, rather than altered innate preferences of individuals or populations. Detailed review of the contemporary evidence base does not yet provide any clear-cut example of true behavioural resistance and is, therefore, consistent with the hypothesis presented. Caution should be exercised before over-interpreting most existing reports of increased frequency of behavioural traits which enable mosquitoes to evade fatal contact with insecticides: this may simply be the result of suppressing the most behaviourally vulnerable of the vector taxa that constituted the original transmission system. Mosquito taxa which have always exhibited such evasive traits may be more accurately described as behaviourally resilient, rather than resistant. Ongoing national or regional entomological monitoring surveys of physiological susceptibility to insecticides should be supplemented with biologically and epidemiologically meaningfully estimates of malaria vector population dynamics and the behavioural phenotypes that determine intervention impact, in order to design, select, evaluate and optimize the implementation of vector control measures
    • …
    corecore