140 research outputs found

    Energy of eigen-modes in magnetohydrodynamic flows of ideal fluids

    Full text link
    Analytical expression for energy of eigen-modes in magnetohydrodynamic flows of ideal fluids is obtained. It is shown that the energy of unstable modes is zero, while the energy of stable oscillatory modes (waves) can assume both positive and negative values. Negative energy waves always correspond to non-symmetric eigen-modes -- modes that have a component of wave-vector along the equilibrium velocity. These results suggest that all non-symmetric instabilities in ideal MHD systems with flows are associated with coupling of positive and negative energy waves. As an example the energy of eigen-modes is calculated for incompressible conducting fluid rotating in axial magnetic field.Comment: 10 pages, 3 figure

    Effect of self-consistent electric field on characteristics of graphene p-i-n tunneling transit-time diodes

    Full text link
    We develop a device model for p-i-n tunneling transit-time diodes based on single- and multiple graphene layer structures operating at the reverse bias voltages. The model of the graphene tunneling transit-time diode (GTUNNETT) accounts for the features of the interband tunneling generation of electrons and holes and their ballistic transport in the device i-section, as well as the effect of the self-consistent electric field associated with the charges of propagating electrons and holes. Using the developed model, we calculate the dc current-voltage characteristics and the small-signal ac frequency-dependent admittance as functions of the GTUNNETT structural parameters, in particular, the number of graphene layers and the dielectric constant of the surrounding media. It is shown that the admittance real part can be negative in a certain frequency range. As revealed, if the i-section somewhat shorter than one micrometer, this range corresponds to the terahertz frequencies. Due to the effect of the self-consistent electric field, the behavior of the GTUNNETT admittance in the range of its negativity of its real part is rather sensitive to the relation between the number of graphene layers and dielectric constant. The obtained results demonstrate that GTUNNETTs with optimized structure can be used in efficient terahertz oscillators.Comment: 8 pages, 9 figure

    Peculiarities and evolution of Raman spectra of multilayer Ge/Si(001) heterostructures containing arrays of low-temperature MBE-grown Ge quantum dots of different size and number density: Experimental studies and numerical simulations

    Full text link
    Ge/Si(001) multilayer heterostructures containing arrays of low-temperature self-assembled Ge quantum dots and very thin Six_xGe1−x_{1-x} layers of varying composition and complex geometry have been studied using Raman spectroscopy and scanning tunneling microscopy. The dependence of Raman spectra on the effective thickness of deposited Ge layers has been investigated in detail in the range from 4 to 18 \r{A}. The position and shape of both Ge and SiGe vibrational modes are of great interest since they are closely related to the strain and composition of the material that plays a role of active component in perspective optoelectronic devices based on such structures. In this work, we present an explanation for some peculiar features of Raman spectra, which makes it possible to control the quality of the grown heterostructures more effectively. A dramatic increase of intensity of both the Ge−-Ge and Si−-Ge bands for the structure containing Ge layers of 10 \r{A} and anomalous shift and broadening of the Si−-Ge band for structures comprising Ge layers of 8 and 9 \r{A} thick were observed. In our model, the anomalous behavior of the Raman spectra with the change of thickness of deposited Ge is connected with the flatness of Ge layers as well as transitional SiGe domains formed via the stress-induced diffusion from {105} facets of quantum dots. The conclusions are supported by the STM studies and the numerical calculations.Comment: 17 pages, 11 figure

    Chiral photonic super-crystals based on helical van der Waals homostructures

    Full text link
    Chirality is probably the most mysterious among all symmetry transformations. Very readily broken in biological systems, it is practically absent in naturally occurring inorganic materials and is very challenging to create artificially. Chiral optical wavefronts are often used for the identification, control and discrimination of left- and right-handed biological and other molecules. Thus, it is crucially important to create materials capable of chiral interaction with light, which would allow one to assign arbitrary chiral properties to a light field. In this paper, we utilized van der Waals technology to assemble helical homostructures with chiral properties (e. g. circular dichroism). Because of the large range of van der Waals materials available such helical homostructures can be assigned with very flexible optical properties. We demonstrate our approach by creating helical homostructures based on multilayer As2_2S3_3, which offers the most pronounced chiral properties even in thin structures due to its strong biaxial optically anisotropy. Our work showcases that the chirality of an electromagnetic system may emerge at an intermediate level between the molecular and the mesoscopic one due to the tailored arrangement of non-chiral layers of van der Waals crystals and without additional patterning

    Broadband optical properties of monolayer and bulk MoS2

    Get PDF
    Layered semiconductors such as transition metal dichalcogenides (TMDs) offer endless possibilities for designing modern photonic and optoelectronic components. However, their optical engineering is still a challenging task owing to multiple obstacles, including the absence of a rapid, contactless, and the reliable method to obtain their dielectric function as well as to evaluate in situ the changes in optical constants and exciton binding energies. Here, we present an advanced approach based on ellipsometry measurements for retrieval of dielectric functions and the excitonic properties of both monolayer and bulk TMDs. Using this method, we conduct a detailed study of monolayer MoS2 and its bulk crystal in the broad spectral range (290–3300 nm). In the near- and mid-infrared ranges, both configurations appear to have no optical absorption and possess an extremely high dielectric permittivity making them favorable for lossless subwavelength photonics. In addition, the proposed approach opens a possibility to observe a previously unreported peak in the dielectric function of monolayer MoS2 induced by the use of perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS) seeding promoters for MoS2 synthesis and thus enables its applications in chemical and biological sensing. Therefore, this technique as a whole offers a state-of-the-art metrological tool for next-generation TMD-based devices
    • …
    corecore