68 research outputs found
Wick's theorem for q-deformed boson operators
In this paper combinatorial aspects of normal ordering arbitrary words in the
creation and annihilation operators of the q-deformed boson are discussed. In
particular, it is shown how by introducing appropriate q-weights for the
associated ``Feynman diagrams'' the normally ordered form of a general
expression in the creation and annihilation operators can be written as a sum
over all q-weighted Feynman diagrams, representing Wick's theorem in the
present context.Comment: 9 page
On Linear Congestion Games with Altruistic Social Context
We study the issues of existence and inefficiency of pure Nash equilibria in
linear congestion games with altruistic social context, in the spirit of the
model recently proposed by de Keijzer {\em et al.} \cite{DSAB13}. In such a
framework, given a real matrix specifying a particular
social context, each player aims at optimizing a linear combination of the
payoffs of all the players in the game, where, for each player , the
multiplicative coefficient is given by the value . We give a broad
characterization of the social contexts for which pure Nash equilibria are
always guaranteed to exist and provide tight or almost tight bounds on their
prices of anarchy and stability. In some of the considered cases, our
achievements either improve or extend results previously known in the
literature
One-sided Cauchy-Stieltjes Kernel Families
This paper continues the study of a kernel family which uses the
Cauchy-Stieltjes kernel in place of the celebrated exponential kernel of the
exponential families theory. We extend the theory to cover generating measures
with support that is unbounded on one side. We illustrate the need for such an
extension by showing that cubic pseudo-variance functions correspond to
free-infinitely divisible laws without the first moment. We also determine the
domain of means, advancing the understanding of Cauchy-Stieltjes kernel
families also for compactly supported generating measures
Network Creation Games: Think Global - Act Local
We investigate a non-cooperative game-theoretic model for the formation of
communication networks by selfish agents. Each agent aims for a central
position at minimum cost for creating edges. In particular, the general model
(Fabrikant et al., PODC'03) became popular for studying the structure of the
Internet or social networks. Despite its significance, locality in this game
was first studied only recently (Bil\`o et al., SPAA'14), where a worst case
locality model was presented, which came with a high efficiency loss in terms
of quality of equilibria. Our main contribution is a new and more optimistic
view on locality: agents are limited in their knowledge and actions to their
local view ranges, but can probe different strategies and finally choose the
best. We study the influence of our locality notion on the hardness of
computing best responses, convergence to equilibria, and quality of equilibria.
Moreover, we compare the strength of local versus non-local strategy-changes.
Our results address the gap between the original model and the worst case
locality variant. On the bright side, our efficiency results are in line with
observations from the original model, yet we have a non-constant lower bound on
the price of anarchy.Comment: An extended abstract of this paper has been accepted for publication
in the proceedings of the 40th International Conference on Mathematical
Foundations on Computer Scienc
The Firefighter Problem: A Structural Analysis
We consider the complexity of the firefighter problem where b>=1 firefighters
are available at each time step. This problem is proved NP-complete even on
trees of degree at most three and budget one (Finbow et al.,2007) and on trees
of bounded degree b+3 for any fixed budget b>=2 (Bazgan et al.,2012). In this
paper, we provide further insight into the complexity landscape of the problem
by showing that the pathwidth and the maximum degree of the input graph govern
its complexity. More precisely, we first prove that the problem is NP-complete
even on trees of pathwidth at most three for any fixed budget b>=1. We then
show that the problem turns out to be fixed parameter-tractable with respect to
the combined parameter "pathwidth" and "maximum degree" of the input graph
Designing cost-sharing methods for Bayesian games
We study the design of cost-sharing protocols for two fundamental resource allocation problems, the Set Cover and the Steiner Tree Problem, under environments of incomplete information (Bayesian model). Our objective is to design protocols where the worst-case Bayesian Nash equilibria, have low cost, i.e. the Bayesian Price of Anarchy (PoA) is minimized. Although budget balance is a very natural requirement, it puts considerable restrictions on the design space, resulting in high PoA. We propose an alternative, relaxed requirement called budget balance in the equilibrium (BBiE).We show an interesting connection between algorithms for Oblivious Stochastic optimization problems and cost-sharing design with low PoA. We exploit this connection for both problems and we enforce approximate solutions of the stochastic problem, as Bayesian Nash equilibria, with the same guarantees on the PoA. More interestingly, we show how to obtain the same bounds on the PoA, by using anonymous posted prices which are desirable because they are easy to implement and, as we show, induce dominant strategies for the players
LNCS
In resource allocation games, selfish players share resources that are needed in order to fulfill their objectives. The cost of using a resource depends on the load on it. In the traditional setting, the players make their choices concurrently and in one-shot. That is, a strategy for a player is a subset of the resources. We introduce and study dynamic resource allocation games. In this setting, the game proceeds in phases. In each phase each player chooses one resource. A scheduler dictates the order in which the players proceed in a phase, possibly scheduling several players to proceed concurrently. The game ends when each player has collected a set of resources that fulfills his objective. The cost for each player then depends on this set as well as on the load on the resources in it – we consider both congestion and cost-sharing games. We argue that the dynamic setting is the suitable setting for many applications in practice. We study the stability of dynamic resource allocation games, where the appropriate notion of stability is that of subgame perfect equilibrium, study the inefficiency incurred due to selfish behavior, and also study problems that are particular to the dynamic setting, like constraints on the order in which resources can be chosen or the problem of finding a scheduler that achieves stability
Discrete Convex Functions on Graphs and Their Algorithmic Applications
The present article is an exposition of a theory of discrete convex functions
on certain graph structures, developed by the author in recent years. This
theory is a spin-off of discrete convex analysis by Murota, and is motivated by
combinatorial dualities in multiflow problems and the complexity classification
of facility location problems on graphs. We outline the theory and algorithmic
applications in combinatorial optimization problems
Alternative proof for the localization of Sinai's walk
We give an alternative proof of the localization of Sinai's random walk in
random environment under weaker hypothesis than the ones used by Sinai.
Moreover we give estimates that are stronger than the one of Sinai on the
localization neighborhood and on the probability for the random walk to stay
inside this neighborhood
- …