267 research outputs found

    Long-range thermoelectric effects in mesoscopic superconductor-normal metal structures

    Full text link
    We consider a mesoscopic four-terminal superconductor/normal metal (S/N) structure in the presence of a temperature gradient along the N wire. A thermoemf arises in this system even in the absence of the thermoelectric quasiparticle current if the phase difference between the superconductors is not zero. We show that the thermoemf is not small in the case of a negligible Josephson coupling between two superconductors. It is also shown that the thermoelectric voltage has two maxima: one at a low temperature and another at a temperature close to the critical temperature. The obtained temperature dependence of the thermoemf describes qualitatively experimental data.Comment: 9 pages, 6 figure

    Electron-hole imbalance in superconductor-normal metal mesoscopic structures

    Full text link
    We analysed the electron-hole or, in another words, branch imbalance (BI) and the related electric potential VimbV_{imb} which may arise in a mesoscopic superconductor/normal metal (S/N) structure under non-equilibrium conditions in the presence of a supercurrent. Non-equilibrium conditions can be created in different ways: a) a quasiparticle current flowing between the N reservoirs; b) a temperature gradient between the N reservoirs and no quasiparticle current. It is shown that the voltage VimbV_{imb} oscillates with the phase difference ϕ\phi. In a cross-geometry structure the voltage VimbV_{imb} arises in the vertical branch and affects the conditions for a transition into the π\pi-state.Comment: 6 pages, 5 figures, accepted for publication in Europhysics Letter

    Transport and triplet superconducting condensate in mesoscopic ferromagnet-superconductor structures

    Full text link
    We calculate the conductance of a superconductor/ferromagnet (S/F) mesoscopic structure in the dirty limit. First we assume that the ferromagnet exhibits a homogeneous magnetization and consider the case that the penetration of the condensate into the F wire is negligible and the case in which the proximity effect is taken into account. It is shown that if the exchange field is large enough, the conductance below the critical temperature TCT_C, is always smaller than the conductance in the normal state. At last, we calculate the conductance for a F/S structure with a local inhomogeneity of the magnetization in the ferromagnet. We demonstrate that a triplet component of the condensate is induced in the F wire.This leads to a increase of the conductance below TCT_C.Comment: 31 pages, 6 figures. to be published in International Journal of Modern Physics B; references adde

    Automated control system for a mashing process

    Get PDF
    The goal of this paper is to describe a system for a mashing process, which is the first part of brewing beer. The mashing is a procedure where the fermentable (and some non-fermentable) sugars are extracted from malts. The program part based on LabVIEW, which is used to control NI CompactRIO. The main target of the project is to reach a predefined levels of the temperatures and maintain it during the pauses. When the necessary break time is ended the system is ready to go to the new value. The precise control of the temperatures during the breaks is one of the critical factors that define the texture and alcohol content of the beer. The system has two tanks with resistors PT100 in both of them, heat exchanger (coil), heater and pump. The first tank has heating element in order to rise the temperature in the other one. This project has practical solution with all explanations and graphs which are proven working ability of this control system

    Stimulated emission and lasing in Cu(In,Ga)Se2 thin films

    Get PDF
    Stimulated emission and lasing in Cu(In,Ga)Se 2 thin films have been demonstrated at a temperature of 20 K using excitation by a nanosecond pulsed N 2 laser with power densities in the range from 2 to 100 kW cm − 2 . Sharp narrowing of the photoluminescence band, superlinear dependence of its intensity on excitation laser power, as well as stabilization of the spectral position and of the full-width at half-maximum of the band were observed in the films at increasing excitation intensity. The stimulated emission threshold was determined to be 20 kW cm − 2 . A gain value of 94 cm − 1 has been estimated using the variable stripe length method. Several sharp laser modes near 1.13 eV were observed above the laser threshold of I thr ~ 50 kW cm −

    Optical and laser properties of the ZnSe/ZnMgSSe multiple quantum well heterostructures

    Get PDF

    Study of porous monolithic sio2 prepeared by sol-gel method

    Get PDF
    For applications as catalyst supports in flow reactors, porous silica monoliths require a combination of connected pores of micron-scale and nm-scale pores. We have synthesised a range porous silica monoliths, characterised their nm-scale pores and measured their permeability coefficients k. It can be controlled by adjustment of the polymer/silane concentration ratio, whilst maintaining the specific surface area and nm-scale porosity approximately constant
    corecore