185 research outputs found

    Two Loop Scalar Bilinears for Inflationary SQED

    Get PDF
    We evaluate the one and two loop contributions to the expectation values of two coincident and gauge invariant scalar bilinears in the theory of massless, minimally coupled scalar quantum electrodynamics on a locally de Sitter background. One of these bilinears is the product of two covariantly differentiated scalars, the other is the product of two undifferentiated scalars. The computations are done using dimensional regularization and the Schwinger-Keldysh formalism. Our results are in perfect agreement with the stochastic predictions at this order.Comment: 43 pages, LaTeX 2epsilon, 5 figures (using axodraw.sty) Version 2 has updated references and important corrections to Tables 3-5 and to eqns (139-141), (145-146), (153-155), (158) and (160

    Primordial Density Perturbations and Reheating from Gravity

    Full text link
    We consider the presence and evolution of primordial density perturbations in a cosmological model based on a simple ansatz which captures -- by providing a set of effective gravitational field equations -- the strength of the enhanced quantum loop effects that can arise during inflation. After deriving the general equations that perturbations obey, we concentrate on scalar perturbations and show that their evolution is quite different than that of conventional inflationary models but still phenomenologically acceptable. The main reason for this novel evolution is the presence of an oscillating regime after the end of inflation which makes all super-horizon scalar modes oscillate. The same reason allows for a natural and very fast reheating mechanism for the universe.Comment: 37 pages, 2 figures, uses LaTeX2

    Properties of the ionized gas in HH202. I: Results from integral field spectroscopy with PMAS

    Full text link
    We present results from integral field spectroscopy with the Potsdam multi-Aperture Spectrograph of the head of the Herbig-Haro object HH 202 with a spatial sampling of 1"x1". We have obtained maps of different emission lines, physical conditions --such as electron temperature and density-- and ionic abundances from recombination and collisionally excited lines. We present the first map of the Balmer temperature and of the temperature fluctuation parameter, t^2. We have calculated the t^2 in the plane of the sky, which is substantially smaller than that determined along the line of sight. We have mapped the abundance discrepancy factor of O^{2+}, ADF(O^{2+}), finding its maximum value at the HH 202-S position. We have explored the relations between the ADF(O^{2+}) and the electron density, the Balmer and [O III] temperatures, the ionization degree as well as the t^2 parameter. We do not find clear correlations between these properties and the results seem to support that the ADF and t^2 are independent phenomena. We have found a weak negative correlation between the O^{2+} abundance determined from recombination lines and the temperature, which is the expected behaviour in an ionized nebula, hence it seems that there is not evidence for the presence of super-metal rich droplets in H II regions.Comment: 12 pages, 11 figures. Accepted for publication in MNRA

    One Loop Back Reaction On Power Law Inflation

    Get PDF
    We consider quantum mechanical corrections to a homogeneous, isotropic and spatially flat geometry whose scale factor expands classically as a general power of the co-moving time. The effects of both gravitons and the scalar inflaton are computed at one loop using the manifestly causal formalism of Schwinger with the Feynman rules recently developed by Iliopoulos {\it et al.} We find no significant effect, in marked contrast with the result obtained by Mukhanov {\it et al.} for chaotic inflation based on a quadratic potential. By applying the canonical technique of Mukhanov {\it et al.} to the exponential potentials of power law inflation, we show that the two methods produce the same results, within the approximations employed, for these backgrounds. We therefore conclude that the shape of the inflaton potential can have an enormous impact on the one loop back-reaction.Comment: 28 pages, LaTeX 2 epsilo

    The Quantum Gravitationally Induced Stress Tensor

    Get PDF
    We derive non-perturbative relations between the expectation value of the invariant element in a homogeneous and isotropic state and the quantum gravitationally induced pressure and energy density. By exploiting previously obtained bounds for the maximum possible growth of perturbative corrections to a locally de Sitter background we show that the two loop result dominates all higher orders. We also show that the quantum gravitational slowing of inflation becomes non-perturbatively strong earlier than previously expected.Comment: 13 pages, LaTeX 2 epsilo

    General plane wave mode functions for scalar-driven cosmology

    Full text link
    We give a solution for plane wave scalar, vector and tensor mode functions in the presence of any homogeneous, isotropic and spatially flat cosmology which is driven by a single, minimally coupled scalar. The solution is obtained by rescaling the various mode functions so that they reduce, with a suitable scale factor and a suitable time variable, to those of a massless, minimally coupled scalar. We then express the general solution in terms of co-moving time and the original scale factor.Comment: 6 pages, revtex4, no figures, revised version corrects an embarrassing mistake (in the published version) for the parameter q_C. Affected eqns are 45 and 6

    Computing the Primordial Power Spectra Directly

    Full text link
    The tree order power spectra of primordial inflation depend upon the norm-squared of mode functions which oscillate for early times and then freeze in to constant values. We derive simple differential equations for the power spectra, that avoid the need to numerically simulate the physically irrelevant phases of the mode functions. We also derive asymptotic expansions which should be valid until a few e-foldings before first horizon crossing, thereby avoiding the need to evolve mode functions from the ultraviolet over long periods of inflation.Comment: 11 pages, uses LaTex2

    A Scalar Measure Of The Local Expansion Rate

    Get PDF
    We define a scalar measure of the local expansion rate based on how astronomers determine the Hubble constant. Our observable is the inverse conformal d'Alembertian acting on a unit ``standard candle.'' Because this quantity is an integral over the past lightcone of the observation point it provides a manifestly causal and covariant technique for averaging over small fluctuations. For an exactly homogeneous and isotropic spacetime our scalar gives minus one half times the inverse square of the Hubble parameter. Our proposal is that it be assigned this meaning generally and that it be employed to decide the issue of whether or not there is a significant quantum gravitational back-reaction on inflation. Several techniques are discussed for promoting the scalar to a full invariant by giving a geometrical description for the point of observation. We work out an explicit formalism for evaluating the invariant in perturbation theory. The results for two simple models are presented in subsequent papers.Comment: 25 pages, LaTeX 2 epsilon, 1 figur

    Primordial Gravitational Waves Enhancement

    Full text link
    We reconsider the enhancement of primordial gravitational waves that arises from a quantum gravitational model of inflation. A distinctive feature of this model is that the end of inflation witnesses a brief phase during which the Hubble parameter oscillates in sign, changing the usual Hubble friction to anti-friction. An earlier analysis of this model was based on numerically evolving the graviton mode functions after guessing their initial conditions near the end of inflation. The current study is based on an equation which directly evolves the normalized square of the magnitude. We are also able to make a very reliable estimate for the initial condition using a rapidly converging expansion for the sub-horizon regime. Results are obtained for the energy density per logarithmic wave number as a fraction of the critical density. These results exhibit how the enhanced signal depends upon the number of oscillatory periods; they also show the resonant effects associated with particular wave numbers.Comment: 25 pages, 14 figure

    Possible Enhancement of High Frequency Gravitational Waves

    Full text link
    We study the tensor perturbations in a class of non-local, purely gravitational models which naturally end inflation in a distinctive phase of oscillations with slight and short violations of the weak energy condition. We find the usual generic form for the tensor power spectrum. The presence of the oscillatory phase leads to an enhancement of gravitational waves with frequencies somewhat less than 10^{10} Hz.Comment: 27 pages, 11 figures, LaTeX.2
    • …
    corecore