627 research outputs found
Impact of Coseismic Frictional Melting on Particle Size, Shape Distribution and Chemistry of Experimentally-Generated Pseudotachylite
In natural friction melts, or pseudotachylites, clast textures and glass compositions can influence the frictional behavior of faults hosting pseudotachylites, and are, in turn, sensitive to the processes involved in pseudotachylite formation. Quantification of these parameters in situations where the host rock composition and formation conditions are well-constrained, such as analogue experiments, may yield calibrations that can be employed in analysis of natural pseudotachylites. In this paper, we experimentally-generated pseudotachylites in granitoid rocks (tonalite and Westerly granite) at Pconf = 40 MPa and slip rates of ∼0.1 m s−1, comparable to the conditions under which natural pseudotachylite is known to form in Earth’s upper crust. We find variations in both clast textures and glass compositions that reflect formation processes, and probably influence the frictional behavior of similar natural faults hosting pseudotachylite. Quantification of particle size and shape distribution with a semi-automatic image analysis method, combined with analysis of glass and host-rock composition of these experimentally generated pseudotachylites, reveals that the textures of pseudotachylite material evolved by combinations of 1) comminution, 2) heterogeneous frictional flash melting, and 3) homogeneous (diffusive) clast melting and/or marginal decrepitation. Fractal dimensions of pseudotachylite-hosted clasts (D ∼ 3) that are greater than those of marginal fragmented host rock particles (gouge, D ∼ 2.4), reflect an increase of the intensity of comminution by slip localisation during a pre-melting phase. Chemical analyses demonstrate that these pseudotachylite glasses were generated by frictional flash melting, where host rock phases melt individually. Biotite is the least resistant to melting, feldspar intermediate, and quartz is the most resistant. The peudotachylite glass generated in these experiments has an alkaline composition, is depleted in SiO2 compared to the bulk host-rock, and shows heterogeneous compositions in a single sample related to proximity to host-rock minerals. The percentage contributions of host rock phases to the melt, calculated by a mixing model, shows that glass compositions are dominated by plagioclase and biotite. Within the melt, margins of clasts were dissolved uniformly by diffusion and/or affected by marginal decrepitation, resulting in convex and round shapes with convexities averaging ∼0.8 and circularities averaging ∼0.65
CD25+ CD4+ T Cells, Expanded with Dendritic Cells Presenting a Single Autoantigenic Peptide, Suppress Autoimmune Diabetes
In the nonobese diabetic (NOD) mouse model of type 1 diabetes, the immune system recognizes many autoantigens expressed in pancreatic islet β cells. To silence autoimmunity, we used dendritic cells (DCs) from NOD mice to expand CD25+ CD4+ suppressor T cells from BDC2.5 mice, which are specific for a single islet autoantigen. The expanded T cells were more suppressive in vitro than their freshly isolated counterparts, indicating that DCs from autoimmune mice can increase the number and function of antigen-specific, CD25+ CD4+ regulatory T cells. Importantly, only 5,000 expanded CD25+ CD4+ BDC2.5 T cells could block autoimmunity caused by diabetogenic T cells in NOD mice, whereas 105 polyclonal, CD25+ CD4+ T cells from NOD mice were inactive. When islets were examined in treated mice, insulitis development was blocked at early (3 wk) but not later (11 wk) time points. The expanded CD25+ CD4+ BDC2.5 T cells were effective even if administered 14 d after the diabetogenic T cells. Our data indicate that DCs can generate CD25+ CD4+ T cells that suppress autoimmune disease in vivo. This might be harnessed as a new avenue for immunotherapy, especially because CD25+ CD4+ regulatory cells responsive to a single autoantigen can inhibit diabetes mediated by reactivity to multiple antigens
First direct observation of Dirac fermions in graphite
Originating from relativistic quantum field theory, Dirac fermions have been
recently applied to study various peculiar phenomena in condensed matter
physics, including the novel quantum Hall effect in graphene, magnetic field
driven metal-insulator-like transition in graphite, superfluid in 3He, and the
exotic pseudogap phase of high temperature superconductors. Although Dirac
fermions are proposed to play a key role in these systems, so far direct
experimental evidence of Dirac fermions has been limited. Here we report the
first direct observation of massless Dirac fermions with linear dispersion near
the Brillouin zone (BZ) corner H in graphite, coexisting with quasiparticles
with parabolic dispersion near another BZ corner K. In addition, we report a
large electron pocket which we attribute to defect-induced localized states.
Thus, graphite presents a novel system where massless Dirac fermions,
quasiparticles with finite effective mass, and defect states all contribute to
the low energy electronic dynamics.Comment: Nature Physics, in pres
Constraints on Alpine Fault (New Zealand) mylonitization temperatures and the geothermal gradient from Ti-in-quartz thermobarometry
We constrain the thermal state of the central
Alpine Fault using approximately 750Â Ti-in-quartz secondary ion mass spectrometer (SIMS) analyses from a suite
of variably deformed mylonites. Ti-in-quartz concentrations span more than 1 order of magnitude from 0.24 to  ∼ 5 ppm, suggesting
recrystallization of quartz over a 300 °C range in temperature.
Most Ti-in-quartz concentrations in mylonites, protomylonites, and the Alpine
Schist protolith are between 2 and 4 ppm and do not vary as a function of
grain size or bulk rock composition. Analyses of 30Â large, inferred-remnant
quartz grains ( > 250 µm) as well as late, crosscutting,
chlorite-bearing quartz veins also reveal restricted Ti concentrations of 2–4 ppm. These results indicate that the vast majority of Alpine Fault
mylonitization occurred within a restricted zone of pressure–temperature
conditions where 2–4 ppm Ti-in-quartz concentrations are stable. This
constrains the deep geothermal gradient from the Moho to about 8 km to a
slope of 5 °C km−1. In contrast, the small grains (10–40 µm)
in ultramylonites have lower Ti concentrations of 1–2 ppm, indicating a
deviation from the deeper pressure–temperature trajectory during the latest
phase of ductile deformation. These constraints suggest an abrupt, order of
magnitude change in the geothermal gradient to an average of about 60 °C km−1 at depths shallower than about 8 km, i.e., within the
seismogenic zone. Anomalously, the lowest-Ti quartz (0.24–0.7 ppm) occurs
away from the fault in protomylonites, suggesting that the outer fault zone
experienced minor plastic deformation late in the exhumation history when
more fault-proximal parts of the fault were deforming exclusively by brittle
processes.</p
Quantum magneto-optics of graphite family
The optical conductivity of graphene, bilayer graphene, and graphite in
quantizing magnetic fields is studied. Both dynamical conductivities,
longitudinal and Hall's, are analytically evaluated. The conductivity peaks are
explained in terms of electron transitions. We have shown that trigonal warping
can be considered within the perturbation theory for strong magnetic fields
larger than 1 T and in the semiclassical approach for weak fields when the
Fermi energy is much larger than the cyclotron frequency. The main optical
transitions obey the selection rule with \Deltan = 1 for the Landau number n,
however the \Deltan = 2 transitions due to the trigonal warping are also
possible. The Faraday/Kerr rotation and light transmission/reflection in the
quantizing magnetic fields are calculated. Parameters of the
Slonczewski-Weiss-McClure model are used in the fit taking into account the
previous dHvA measurements and correcting some of them for the case of strong
magnetic fields.Comment: 28 pages, 12 figures. arXiv admin note: text overlap with
arXiv:1106.340
- …