9,256 research outputs found

    Density matrix for the kink ground state of the ferromagnetic XXZ chain

    Full text link
    The exact expression for the density matrix of the kink ground state of the ferromagnetic XXZ chain is obtained. Utilizing this, we exactly calculate various correlation functions such as the longitudinal and transverse spin-spin correlation functions, and the ferromagnetic and antiferromagnetic string formation probabilities. The asymptotic behaviors of these correlation functions are also analyzed. As a consequence, we find that the spin-spin correlation functions decay exponentially for large distances, while the string formation probabilities exhibit Gaussian decay for large strings. We also evaluate the entanglement entropy, which shows interesting behaviors due to the lack of the translational invariance of the state.Comment: 7 pages, 9 figure

    Free energies and critical exponents of the A_1^{(1)}, B_n^{(1)}, C_n^{(1)} and D_n^{(1)} face models

    Full text link
    We obtain the free energies and critical exponents of models associated with elliptic solutions of the star-triangle relation and reflection equation. The models considered are related to the affine Lie algebras A_1^{(1)}, B_n^{(1)},C_n^{(1)} and D_n^{(1)}. The bulk and surface specific heat exponents are seen to satisfy the scaling relation 2\alpha_s = \alpha_b + 2. It follows from scaling relations that in regime III the correlation length exponent \nu is given by \nu=(l+g)/2g, where l is the level and g is the dual Coxeter number. In regime II we find \nu=(l+g)/2l.Comment: 9 pages, Latex, no figure

    Quantum spin chains in a magnetic field

    Full text link
    We demonstrate that the ``worm'' algorithm allows very effective and precise quantum Monte Carlo (QMC) simulations of spin systems in a magnetic field, and its auto-correlation time is rather insensitive to the value of H at low temperature. Magnetization curves for the s=1/2s=1/2 and s=1s=1 chains are presented and compared with existing Bethe ansatz and exact diagonalization results. From the Green function analysis we deduce the magnon spectra in the s=1 system, and directly establish the "relativistic" form E(p)=(\Delta ^2 +v^2 p^2)^{1/2} of the dispersion law.Comment: 6 pages, 8 figures; removed discussion of spin-2 case - will be published later in a separate pape

    Transport Coefficients of the Anderson Model via the Numerical Renormalization Group

    Full text link
    The transport coefficients of the Anderson model are calculated by extending Wilson's NRG method to finite temperature Green's functions. Accurate results for the frequency and temperature dependence of the single--particle spectral densities and transport time τ(ω,T)\tau(\omega,T) are obtained and used to extract the temperature dependence of the transport coefficients in the strong correlation limit. The low temperature anomalies in the resistivity, ρ(T)\rho(T), thermopower, S(T)S(T), thermal conductivity κ(T)\kappa(T) and Hall coefficient, RH(T)R_{H}(T), are discussed. All quantities exhibit the expected Fermi liquid behaviour at low temperature with power law dependecies on T/TKT/T_{K} in very good agreement with analytic results based on Fermi liquid theory. Scattering of conduction electrons in higher, l>0l>0, angular momentum channels is also considered and an expression is derived for the corresponding transport time and used to discuss the influence of non--resonant scattering on the transport properties.Comment: 45 pages, RevTeX, 28 figures, available on reques

    An Electron Spin Resonance Selection Rule for Spin-Gapped Systems

    Full text link
    The direct electron spin resonance (ESR) absorption between a singlet ground state and the triplet excited states of spin gap systems is investigated. Such an absorption, which is forbidden by the conservation of the total spin quantum number in isotropic Hamiltonians, is allowed by the Dzyaloshinskii-Moriya interaction. We show a selection rule in the presence of this interaction, using the exact numerical diagonalization of the finite cluster of the quasi-one-dimensional bond-alternating spin system. The selection rule is also modified into a suitable form in order to interpret recent experimental results on CuGeO3_3 and NaV2_2O5_5.Comment: 5 pages, Revtex, with 6 eps figures, to appear in J. Phys. Soc. Jpn. Vol. 69 No. 11 (2000

    Magnetothermal transport in the spin-1/2 chains of copper pyrazine dinitrate

    Full text link
    We present experiments on the thermal transport in the spin-1/2 chain compound copper pyrazine dinitrate Cu(C_4 H_4 N_2)(NO_3)_2. The heat conductivity shows a surprisingly strong dependence on the applied magnetic field B, characterized at low temperatures by two main features. The first one appearing at low B is a characteristic dip located at mu_B B ~ k_B T, that may arise from Umklapp scattering. The second one is a plateau-like feature in the quantum critical regime, mu_B |B-B_c| < k_B T, where B_c is the saturation field at T=0. The latter feature clearly points towards a momentum and field independent mean free path of the spin excitations, contrary to theoretical expectations.Comment: 4 pages, 4 figure

    Conductance Distribution in Disordered Quantum Wires with a Perfectly Conducting Channel

    Full text link
    We study the conductance of phase-coherent disordered quantum wires focusing on the case in which the number of conducting channels is imbalanced between two propagating directions. If the number of channels in one direction is by one greater than that in the opposite direction, one perfectly conducting channel without backscattering is stabilized regardless of wire length. Consequently, the dimensionless conductance does not vanish but converges to unity in the long-wire limit, indicating the absence of Anderson localization. To observe the influence of a perfectly conducting channel, we numerically obtain the distribution of conductance in both cases with and without a perfectly conducting channel. We show that the characteristic form of the distribution is notably modified in the presence of a perfectly conducting channel.Comment: 7 pages, 16 figure

    Non-Abelian Walls in Supersymmetric Gauge Theories

    Full text link
    The Bogomol'nyi-Prasad-Sommerfield (BPS) multi-wall solutions are constructed in supersymmetric U(N_C) gauge theories in five dimensions with N_F(>N_C) hypermultiplets in the fundamental representation. Exact solutions are obtained with full generic moduli for infinite gauge coupling and with partial moduli for finite gauge coupling. The generic wall solutions require nontrivial configurations for either gauge fields or off-diagonal components of adjoint scalars depending on the gauge. Effective theories of moduli fields are constructed as world-volume gauge theories. Nambu-Goldstone and quasi-Nambu-Goldstone scalars are distinguished and worked out. Total moduli space of the BPS non-Abelian walls including all topological sectors is found to be the complex Grassmann manifold SU(N_F) / [SU(N_C) x SU(N_F-N_C) x U(1)] endowed with a deformed metric.Comment: 62 pages, 17 figures, the final version in PR
    corecore