6,290 research outputs found
Evidence for reduced magnetic braking in polars from binary population models
We present the first population synthesis of synchronous magnetic cataclysmic variables, called polars, taking into account the effect of the white dwarf (WD) magnetic field on angular momentum loss. We implemented the reduced magnetic braking (MB) model proposed by Li, Wu & Wickramasinghe into the Binary Stellar Evolution (BSE) code recently calibrated for cataclysmic variable (CV) evolution. We then compared separately our predictions for polars and non-magnetic CVs with a large and homogeneous sample of observed CVs from the Sloan Digital Sky Survey. We found that the predicted orbital period distributions and space densities agree with the observations if period bouncers are excluded. For polars, we also find agreement between predicted and observed mass transfer rates, while the mass transfer rates of non-magnetic CVs with periods ≳3 h drastically disagree with those derived from observations. Our results provide strong evidence that the reduced MB model for the evolution of highly magnetized accreting WDs can explain the observed properties of polars. The remaining main issues in our understanding of CV evolution are the origin of the large number of highly magnetic WDs, the large scatter of the observed mass transfer rates for non-magnetic systems with periods ≳3 h, and the absence of period bouncers in observed samples
Dimensional Reduction applied to QCD at three loops
Dimensional Reduction is applied to \qcd{} in order to compute various
renormalization constants in the \drbar{} scheme at higher orders in
perturbation theory. In particular, the function and the anomalous
dimension of the quark masses are derived to three-loop order. Special emphasis
is put on the proper treatment of the so-called -scalars and the
additional couplings which have to be considered.Comment: 13 pages, minor changes, references adde
An invariant distribution in static granular media
We have discovered an invariant distribution for local packing configurations
in static granular media. This distribution holds in experiments for packing
fractions covering most of the range from random loose packed to random close
packed, for beads packed both in air and in water. Assuming only that there
exist elementary cells in which the system volume is subdivided, we derive from
statistical mechanics a distribution that is in accord with the observations.
This universal distribution function for granular media is analogous to the
Maxwell-Boltzmann distribution for molecular gasses.Comment: 4 pages 3 figure
Orbital-free Bond Breaking via Machine Learning
Machine learning is used to approximate the kinetic energy of one dimensional
diatomics as a functional of the electron density. The functional can
accurately dissociate a diatomic, and can be systematically improved with
training. Highly accurate self-consistent densities and molecular forces are
found, indicating the possibility for ab-initio molecular dynamics simulations
Wick's theorem for q-deformed boson operators
In this paper combinatorial aspects of normal ordering arbitrary words in the
creation and annihilation operators of the q-deformed boson are discussed. In
particular, it is shown how by introducing appropriate q-weights for the
associated ``Feynman diagrams'' the normally ordered form of a general
expression in the creation and annihilation operators can be written as a sum
over all q-weighted Feynman diagrams, representing Wick's theorem in the
present context.Comment: 9 page
A new regional climate model for POLAR-CORDEX : evaluation of a 30-year hindcast with COSMO-CLM2 over Antarctica
Continent-wide climate information over the Antarctic Ice Sheet (AIS) is important to obtain accurate information of present climate and reduce uncertainties of the ice sheet mass balance response and resulting global sea level rise to future climate change. In this study, the COSMO-CLM2 Regional Climate Model is applied over the AIS and adapted for the specific meteorological and climatological conditions of the region. A 30-year hindcast was performed and evaluated against observational records consisting of long-term ground-based meteorological observations, automatic weather stations, radiosoundings, satellite records, stake measurements and ice cores. Reasonable agreement regarding the surface and upper-air climate is achieved by the COSMO-CLM2 model, comparable to the performance of other state-of-the-art climate models over the AIS. Meteorological variability of the surface climate is adequately simulated, and biases in the radiation and surface mass balance are small. The presented model therefore contributes as a new member to the COordinated Regional Downscaling EXperiment project over the AIS (POLAR-CORDEX) and the CORDEX-CORE initiative
Recommended from our members
Graphene oxide coated long period grating for optical sensing purposes
In this paper, fabrication and surrounding refractive index response of a graphene oxide (GO) coated long period grating (LPG) is presented. An improved version of the Hummer's method was followed for the synthesis of GO used in this work and GO sheets were immobilized on the LPG fibre surface by using an electrostatic self-assembly technique. In this initial performance evaluation, intensity and wavelength variations of the transmission loss bands of the GO coated LPG were recorded at room temperature and this sensor probe is introduced as a good candidate for the further development of selective biosensors
Influence of relative NK-DC abundance on placentation and its relation to epigenetic programming in the offspring
Normal placentation relies on an efficient maternal adaptation to pregnancy. Within the decidua, natural killer (NK) cells and dendritic cells (DC) have a critical role in modulating angiogenesis and decidualization associated with pregnancy. However, the contribution of these immune cells to the placentation process and subsequently fetal development remains largely elusive. Using two different mouse models, we here show that optimal placentation and fetal development is sensitive to disturbances in NK cell relative abundance at the fetal–maternal interface. Depletion of NK cells during early gestation compromises the placentation process by causing alteration in placental function and structure. Embryos derived from NK-depleted dams suffer from intrauterine growth restriction (IUGR), a phenomenon that continued to be evident in the offspring on post-natal day 4. Further, we demonstrate that IUGR was accompanied by an overall reduction of global DNA methylation levels and epigenetic changes in the methylation of specific hepatic gene promoters. Thus, temporary changes within the NK cell pool during early gestation influence placental development and function, subsequently affecting hepatic gene methylation and fetal metabolism.Fil: Freitag, Nancy. Medicine University of Berlin; AlemaniaFil: Zwier, M. V.. University of Groningen; PaĂses BajosFil: Barrientos, Gabriela Laura. Medicine University of Berlin; Alemania. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Tirado González, Irene. Medicine University of Berlin; AlemaniaFil: Conrad, Melanie L.. Medicine University of Berlin; AlemaniaFil: Rose, Matthias. Medicine University of Berlin; AlemaniaFil: Scherjon, S. A.. University of Groningen; PaĂses BajosFil: Plösch, T.. University of Groningen; PaĂses BajosFil: Blois, Sandra M.. Medicine University of Berlin; Alemani
Lagrangian theory of structure formation in relativistic cosmology I: Lagrangian framework and definition of a nonperturbative approximation
In this first paper we present a Lagrangian framework for the description of
structure formation in general relativity, restricting attention to
irrotational dust matter. As an application we present a self-contained
derivation of a general-relativistic analogue of Zel'dovich's approximation for
the description of structure formation in cosmology, and compare it with
previous suggestions in the literature. This approximation is then
investigated: paraphrasing the derivation in the Newtonian framework we provide
general-relativistic analogues of the basic system of equations for a single
dynamical field variable and recall the first-order perturbation solution of
these equations. We then define a general-relativistic analogue of Zel'dovich's
approximation and investigate its implications by functionally evaluating
relevant variables, and we address the singularity problem. We so obtain a
possibly powerful model that, although constructed through extrapolation of a
perturbative solution, can be used to put into practice nonperturbatively, e.g.
problems of structure formation, backreaction problems, nonlinear properties of
gravitational radiation, and light-propagation in realistic inhomogeneous
universe models. With this model we also provide the key-building blocks for
initializing a fully relativistic numerical simulation.Comment: 21 pages, content matches published version in PRD, discussion on
singularities added, some formulas added, some rewritten and some correcte
Off-Forward Parton Distributions in 1+1 Dimensional QCD
We use two-dimensional QCD as a toy laboratory to study off-forward parton
distributions (OFPDs) in a covariant field theory. Exact expressions (to
leading order in ) are presented for OFPDs in this model and are
evaluated for some specific numerical examples. Special emphasis is put on
comparing the and regimes as well as on analyzing the
implications for the light-cone description of form factors.Comment: Revtex, 6 pages, 4 figure
- …