73 research outputs found

    Status of ART-XC/SRG Instrument

    Get PDF
    Spectrum Roentgen Gamma (SRG) is an X-ray astrophysical observatory, developed by Russia in collaboration with Germany. The mission will be launched in March 2016 from Baikonur, by a Zenit rocket with a Fregat booster and placed in a 6-month-period halo orbit around L2. The scientific payload consists of two independent telescopes - a soft-x-ray survey instrument, eROSITA, being provided by Germany and a medium-x-ray-energy survey instrument ART-XC being developed by Russia. ART-XC will consist of seven independent, but co-aligned, telescope modules. The NASA Marshall Space Flight Center (MSFC) is fabricating the flight mirror modules for the ART-XC/SRG. Each mirror module will be aligned with a focal plane CdTe double-sided strip detectors which will operate over the energy range of 6-30 keV, with an angular resolution of less than 1, a field of view of approximately 34 and an expected energy resolution of about 10 percent at 14 keV

    The ART-XC telescope on board the SRG observatory

    Full text link
    ART-XC (Astronomical Roentgen Telescope - X-ray Concentrator) is the hard X-ray instrument with grazing incidence imaging optics on board the Spektr-Roentgen-Gamma (SRG) observatory. The SRG observatory is the flagship astrophysical mission of the Russian Federal Space Program, which was successively launched into orbit around the second Lagrangian point (L2) of the Earth-Sun system with a Proton rocket from the Baikonur cosmodrome on 13 July 2019. The ART-XC telescope will provide the first ever true imaging all-sky survey performed with grazing incidence optics in the 4-30 keV energy band and will obtain the deepest and sharpest map of the sky in the energy range of 4-12 keV. Observations performed during the early calibration and performance verification phase as well as during the on-going all-sky survey that started on 12 Dec. 2019 have demonstrated that the in-flight characteristics of the ART-XC telescope are very close to expectations based on the results of ground calibrations. Upon completion of its 4-year all-sky survey, ART-XC is expected to detect ~5000 sources (~3000 active galactic nuclei, including heavily obscured ones, several hundred clusters of galaxies, ~1000 cataclysmic variables and other Galactic sources), and to provide a high-quality map of the Galactic background emission in the 4-12 keV energy band. ART-XC is also well suited for discovering transient X-ray sources. In this paper, we describe the telescope, results of its ground calibrations, major aspects of the mission, the in-flight performance of ART-XC and first scientific results.Comment: 19 pages, 30 figures, accepted for publication in Astronomy and Astrophysic

    SITECON: a tool for detecting conservative conformational and physicochemical properties in transcription factor binding site alignments and for site recognition

    Full text link
    The local DNA conformation in the region of transcription factor binding sites, determined by context, is one of the factors underlying the specificity of DNA–protein interactions. Analysis of the local conformation of a set of functional DNA sequences may allow for determination of the conservative conformational and physicochemical parameters reflecting molecular mechanisms of interaction. The web resource SITECON is designed to detect conservative conformational and physicochemical properties in transcription factor binding sites, contains a knowledge base of conservative properties for >100 high-quality sample sites and allows for recognition of potential transcription factor binding sites based on conservative properties from both the knowledge base and the results of analysis of a sample proposed by a user. The resource SITECON is available at http://wwwmgs.bionet.nsc.ru/mgs/programs/sitecon/
    • 

    corecore