9,870 research outputs found
The Spectra of Lamplighter Groups and Cayley Machines
We calculate the spectra and spectral measures associated to random walks on
restricted wreath products of finite groups with the infinite cyclic group, by
calculating the Kesten-von Neumann-Serre spectral measures for the random walks
on Schreier graphs of certain groups generated by automata. This generalises
the work of Grigorchuk and Zuk on the lamplighter group. In the process we
characterise when the usual spectral measure for a group generated by automata
coincides with the Kesten-von Neumann-Serre spectral measure.Comment: 36 pages, improved exposition, main results slightly strengthene
On the rational subset problem for groups
We use language theory to study the rational subset problem for groups and
monoids. We show that the decidability of this problem is preserved under graph
of groups constructions with finite edge groups. In particular, it passes
through free products amalgamated over finite subgroups and HNN extensions with
finite associated subgroups. We provide a simple proof of a result of
Grunschlag showing that the decidability of this problem is a virtual property.
We prove further that the problem is decidable for a direct product of a group
G with a monoid M if and only if membership is uniformly decidable for
G-automata subsets of M. It follows that a direct product of a free group with
any abelian group or commutative monoid has decidable rational subset
membership.Comment: 19 page
Causality and Electromagnetic Transmissions Through Materials
There have been several experiments which hint at evidence for superluminal
transport of electromagnetic energy through a material slab. On the theoretical
side, it has appeared evident that acausal signals are indeed possible in
quantum electrodynamics. However, it is unlikely that superluminal signals can
be understood on the basis of a purely classical electrodynamic signals passing
through a material. The classical and quantum theories represent quite
different views, and it is the quantum view which may lead to violations of
Einstein causality.Comment: Plain TeX, No figures, 5 page
Flow induced ultrasound scattering: experimental studies
Sound scattering by a finite width beam on a single rigid body rotation
vortex flow is detected by a linear array of transducers (both smaller than a
flow cell), and analyzed using a revised scattering theory. Both the phase and
amplitude of the scattered signal are obtained on 64 elements of the detector
array and used for the analysis of velocity and vorticity fields. Due to
averaging on many pulses the signal-to-noise ratio of the phases difference in
the scattered sound signal can be amplified drastically, and the resolution of
the method in the detection of circulation, vortex radius, vorticity, and
vortex location becomes comparable with that obtained earlier by time-reversal
mirror (TRM) method (P. Roux, J. de Rosny, M. Tanter, and M. Fink, {\sl Phys.
Rev. Lett.} {\bf 79}, 3170 (1997)). The revised scattering theory includes two
crucial steps, which allow overcoming limitations of the existing theories.
First, the Huygens construction of a far field scattering signal is carried out
from a signal obtained at any intermediate plane. Second, a beam function that
describes a finite width beam is introduced, which allows using a theory
developed for an infinite width beam for the relation between a scattering
amplitude and the vorticity structure function. Structure functions of the
velocity and vorticity fields deduced from the sound scattering signal are
compared with those obtained from simultaneous particle image velocimetry (PIV)
measurements. Good quantitative agreement is found.Comment: 14 pages, 23 figures. accepted for publication in Phys. Fluids(June
issue
Parametric Generation of Second Sound by First Sound in Superfluid Helium
We report the first experimental observation of parametric generation of
second sound (SS) by first sound (FS) in superfluid helium in a narrow
temperature range in the vicinity of . The temperature dependence
of the threshold FS amplitude is found to be in a good quantitative agreement
with the theory suggested long time ago and corrected for a finite geometry.
Strong amplitude fluctuations and two types of the SS spectra are observed
above the bifurcation. The latter effect is quantitatively explained by the
discreteness of the wave vector space and the strong temperature dependence of
the SS dissipation length.Comment: 4 pages, 4 postscript figures, REVTE
Clock synchronization with dispersion cancellation
The dispersion cancellation feature of pulses which are entangled in
frequency is employed to synchronize clocks of distant parties. The proposed
protocol is insensitive to the pulse distortion caused by transit through a
dispersive medium. Since there is cancellation to all orders, also the effects
of slowly fluctuating dispersive media are compensated. The experimental setup
can be realized with currently available technology, at least for a proof of
principle.Comment: 4 pages, 3 figure
Elastic turbulence in curvilinear flows of polymer solutions
Following our first report (A. Groisman and V. Steinberg, \sl Nature , 53 (2000)) we present an extended account of experimental observations of
elasticity induced turbulence in three different systems: a swirling flow
between two plates, a Couette-Taylor (CT) flow between two cylinders, and a
flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of
width of the region available for flow to radius of curvature of the
streamlines. The experiments were carried out with dilute solutions of high
molecular weight polyacrylamide in concentrated sugar syrups. High polymer
relaxation time and solution viscosity ensured prevalence of non-linear elastic
effects over inertial non-linearity, and development of purely elastic
instabilities at low Reynolds number (Re) in all three flows. Above the elastic
instability threshold, flows in all three systems exhibit features of developed
turbulence. Those include: (i)randomly fluctuating fluid motion excited in a
broad range of spatial and temporal scales; (ii) significant increase in the
rates of momentum and mass transfer (compared to those expected for a steady
flow with a smooth velocity profile). Phenomenology, driving mechanisms, and
parameter dependence of the elastic turbulence are compared with those of the
conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure
Single polymer dynamics: coil-stretch transition in a random flow
By quantitative studies of statistics of polymer stretching in a random flow
and of a flow field we demonstrate that the stretching of polymer molecules in
a 3D random flow occurs rather sharply via the coil-stretch transition at the
value of the criterion close to theoretically predicted.Comment: 4 pages, 5 figure
- …