78 research outputs found

    Antitumor Activity of Auger Electron Emitter 111In Delivered by Modular Nanotransporter for Treatment of Bladder Cancer With EGFR Overexpression

    Get PDF
    Gamma-ray emitting 111In, which is extensively used for imaging, is also a source of short-range Auger electrons (AE). While exhibiting negligible effect outside cells, these AE become highly toxic near DNA within the cell nucleus. Therefore, these radionuclides can be used as a therapeutic anticancer agent if delivered precisely into the nuclei of tumor target cells. Modular nanotransporters (MNTs) designed to provide receptor-targeted delivery of short-range therapeutic cargoes into the nuclei of target cells are perspective candidates for specific intracellular delivery of AE emitters. The objective of this study was to evaluate the in vitro and in vivo efficacy of 111In attached MNTs to kill human bladder cancer cells overexpressing epidermal growth factor receptor (EGFR). The cytotoxicity of 111In delivered by the EGFR-targeted MNT (111In-MNT) was greatly enhanced on EJ-, HT-1376-, and 5637-expressing EGFR bladder cancer cell lines compared with 111In non-targeted control. In vivo microSPECT/CT imaging and antitumor efficacy studies revealed prolonged intratumoral retention of 111In-MNT with t½ = 4.1 ± 0.5 days as well as significant dose-dependent tumor growth delay (up to 90% growth inhibition) after local infusion of 111In-MNT in EJ xenograft-bearing mice

    Salivary gland immunohistochemistry vs substantia nigra sonography: comparative analysis of diagnostic significance

    Get PDF
    Introduction. Parkinson's disease (PD) urges for new instrumental methods of diagnosis. Transcranial sonography of the substantia nigra (SN TCS) is an established method for early PD diagnosis but its application is limited. Recently, biopsies (primarily that of salivary gland) and test for abnormal -synuclein are suggested to verify PD. Materials and methods. We assessed 12 individuals with PD, HoehnYahr 2.3 0.4. The assessments included: UPDRS, NMSQ, NMSS, RBDSQ, PDQ-8, MoCA, and HADS scoring; SN TCS; and sublingual gland immunohistochemistry for phosphorylated -synuclein (PS-129) with automated morphometric analysis. Results. Substantia nigra hyperechogenicity was shown in 75% of patients whereas biopsy revealed PS-129 in 100% of patients. Echogenic area of the substantia nigra was 0.24 [0.21; 0.3] cm2. PS-129 inclusion area varied from 28.47 [27.55; 96.26] to 238.77 [234.13; 272.49] m2, and PS-129 proportion varied from 13.4% to 93.4% of the nervous fiber area across the patients. We found relations between PS-129 and NMSQ (r = 0.8; p 0.001), NMSS (r = 0.9; p 0.001), PDQ-8 (r = 0.7; p = 0.003), UPDRS-I (r = 0.7; p = 0.009), UPDRS-II (r = 0.6; p = 0.03), and HADS (anxiety r = 0.8; p = 0.002; depression r = 0.6; p = 0.04) scores. Conclusion. The results demonstrate a higher biopsy sensitivity as compared to SN TCS. Automated morphometric analysis has been newly applied to assess PS-129 occurrence. Immunohistochemistry results are directly related to non-motor symptom severity, which may indicate high probability of PS-129 presence and diagnosis confirmation in early disease

    Study of semi-polar gallium nitride grown on m-sapphire by chloride vapor-phase epitaxy

    Get PDF
    In this study, we analyzed the result of the influence of the non-polar plane of a sapphire substrate on the structural, morphological, and optical properties and Raman scattering of the grown epitaxial GaN film. It was found that selected technological conditions for the performed chloride-hydride epitaxy let us obtain the samples of structurally qualitative semi-polar wurtzite gallium nitride with (11¯22) orientation on m-sapphire. Using a set of structural and spectral methods of analysis the structural, morphological, and optical properties of the films were studied and the value of residual bi-axial stresses was determined. A complex of the obtained results means a high structural and optical quality of the epitaxial gallium nitride film. Optimization of the applied technological technique in the future can be a promising approach for the growth of the qualitative GaN structures on m-sapphire substrates

    New Synthetic Thrombin Inhibitors: Molecular Design and Experimental Verification

    Get PDF
    BACKGROUND: The development of new anticoagulants is an important goal for the improvement of thromboses treatments. OBJECTIVES: The design, synthesis and experimental testing of new safe and effective small molecule direct thrombin inhibitors for intravenous administration. METHODS: Computer-aided molecular design of new thrombin inhibitors was performed using our original docking program SOL, which is based on the genetic algorithm of global energy minimization in the framework of a Merck Molecular Force Field. This program takes into account the effects of solvent. The designed molecules with the best scoring functions (calculated binding energies) were synthesized and their thrombin inhibitory activity evaluated experimentally in vitro using a chromogenic substrate in a buffer system and using a thrombin generation test in isolated plasma and in vivo using the newly developed model of hemodilution-induced hypercoagulation in rats. The acute toxicities of the most promising new thrombin inhibitors were evaluated in mice, and their stabilities in aqueous solutions were measured. RESULTS: New compounds that are both effective direct thrombin inhibitors (the best K(I) was <1 nM) and strong anticoagulants in plasma (an IC(50) in the thrombin generation assay of approximately 100 nM) were discovered. These compounds contain one of the following new residues as the basic fragment: isothiuronium, 4-aminopyridinium, or 2-aminothiazolinium. LD(50) values for the best new inhibitors ranged from 166.7 to >1111.1 mg/kg. A plasma-substituting solution supplemented with one of the new inhibitors prevented hypercoagulation in the rat model of hemodilution-induced hypercoagulation. Activities of the best new inhibitors in physiological saline (1 µM solutions) were stable after sterilization by autoclaving, and the inhibitors remained stable at long-term storage over more than 1.5 years at room temperature and at 4°C. CONCLUSIONS: The high efficacy, stability and low acute toxicity reveal that the inhibitors that were developed may be promising for potential medical applications

    Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer

    Get PDF
    corecore