33 research outputs found
Modifying the theory of gravity by changing independent variables
We study some particular modifications of gravity in search for a natural way
to unify the gravitational and electromagnetic interaction. The certain
components of connection in the appearing variants of the theory can be
identified with electromagnetic potential. The methods of adding matter in the
form of scalar and spinor fields are studied. In particular, the expansion of
the local symmetry group up to is explored, in which equations of
Einstein, Maxwell and Dirac are reproduced for the theory with Weyl spinor.Comment: LaTeX, 6 pages, based on a talk given at the XXth International
Seminar on High Energy Physics (QUARKS-2018), Valday, Russia, May 27 - June
2, 201
Modifications of gravity via differential transformations of field variables
We discuss field theories appearing as a result of applying field
transformations with derivatives (differential field transformations, DFT) to a
known theory. We begin with some simple examples of DFTs to see the basic
properties of the procedure. In this process the dynamics of the theory might
either change or conserve. After that we concentrate on the theories of gravity
which appear as a result of various DFT applied to general relativity, namely
the mimetic gravity and Regge-Teitelboim embedding theory. We review main
results related to the extension of dynamics in these theories, as well as the
possibility to write down the action of a theory after DFT as the action of the
original theory before DFT plus an additional term. Such a term usually
contains some constraints with Lagrange multipliers and can be interpreted as
an action of additional matter, which might be of use in cosmological
applications, e.g. for the explanation of the effects of dark matter.Comment: 18 page
Description of gravity in the model with independent nonsymmetric connection
A generalization of General Relativity is studied. The standard
Einstein-Hilbert action is considered in the Palatini formalism, where the
connection and the metric are independent variables, and the connection is not
symmetric. As a result of variation with respect to the metric Einstein
equations are obtained. A variation with respect to the connection leads to an
arbitrariness in the determination of connection, i.e. the presence of gauge
invariance. Then a matter in a form of point particle which interacts with
field of connection is introduced. Also the action is complemented by a kinetic
term for field of the connection to avoid incompatible equation of motion. Thus
after the variation procedures we obtain the Einstein equations, the geodesic
equation and the Maxwell`s equations for electromagnetism, where some
components of the connection play the role of the electromagnetic potential.
Thereby the electromagnetic potential is obtained from the geometry of
space-time.Comment: LaTeX, 6 pages, based on a talk given at the 13th International
Workshop High Energy Physics and Quantum Field Theory, Yaroslavl, Russia,
June 26 - July 3, 201
ΠΠΎΠ»Π½ΠΎΠ²ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ Π² Π΄ΡΠ΅ΠΉΡΡΡΡΠ΅ΠΌ Π»ΡΠ΄Ρ CΠ΅Π²Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΠ΅Π΄ΠΎΠ²ΠΈΡΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π° Π² ΡΠΊΡΠΏΠ΅Π΄ΠΈΡΠΈΠΈ MOSAiC. ΠΠΈΠΌΠ½ΠΈΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄
One of the main directions of theoretical and applied research in the Arctic is the study of physical and mechanical processes in the atmosphere β ice β ocean system. For this purpose, theoretical and experimental problems are solved. The paper employs the method of monitoring the state of drifting ice by means of autonomous seismic stations in the MOSAiC international expedition in 2019β2020. The method of remote registration of ice information with a discreteness of 100 Hz made it possible to obtain data on the processes of compression and crushing of ice of various temporal and spatial scales. The paper presents early findings on the development of physico-mechanical processes in the ice cover under the influence of wind, oceanic gravitational waves, compression and crushing phenomena during large-scale deformations in drifting ice. The amplitude-frequency spectra of surface gravitational waves obtained in this work provide sufficient reason for attributing the phenomena described to swell waves and infra-gravity waves that occur in the stormy areas of the oceans. New data have been obtained on low-frequency horizontally polarized waves caused by the compression of ice and movements along breaks in the cohesive ice cover. The article considers the possibilities of using instrumental monitoring of the occurrence and development of tidal compression and crushing in the drifting ice of the Arctic Ocean. The results obtained can be used to develop methods for predicting the state of ice in real time both in engineering tasks and for improving weather and climate forecasting models.ΠΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
Π½Π°ΡΡΠ½ΡΡ
ΠΈ ΠΏΡΠΈΠΊΠ»Π°Π΄Π½ΡΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π² ΠΡΠΊΡΠΈΠΊΠ΅ ΡΠ²Π»ΡΡΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΠ·ΠΈΠΊΠΎ-ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ Π°ΡΠΌΠΎΡΡΠ΅ΡΠ° β Π»Π΅Π΄ β ΠΎΠΊΠ΅Π°Π½. Π‘ ΡΡΠΎΠΉ ΡΠ΅Π»ΡΡ ΡΠ΅ΡΠ°ΡΡΡΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ Π·Π°Π΄Π°ΡΠΈ. Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΡΡ ΠΌΠ΅ΡΠΎΠ΄ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄ΡΠ΅ΠΉΡΡΡΡΠ΅Π³ΠΎ Π»ΡΠ΄Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π°Π²ΡΠΎΠ½ΠΎΠΌΠ½ΡΡ
ΡΠ΅ΠΉΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ°Π½ΡΠΈΠΉ Π² ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠΉ ΡΠΊΡΠΏΠ΅Π΄ΠΈΡΠΈΠΈ MOSAiC Π² 2019β2020 Π³Π³. ΠΠ΅ΡΠΎΠ΄ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ Π»Π΅Π΄ΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Ρ Π΄ΠΈΡΠΊΡΠ΅ΡΠ½ΠΎΡΡΡΡ100 ΠΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΏΠΎΠ»ΡΡΠΈΡΡ Π΄Π°Π½Π½ΡΠ΅ ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ
ΡΠΆΠ°ΡΠΈΡ ΠΈ ΡΠΎΡΠΎΡΠ΅Π½ΠΈΡ Π»ΡΠ΄ΠΎΠ² ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΡΠ°Π±Π°. Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΠΏΠ΅ΡΠ²ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΠΈ ΡΠΈΠ·ΠΈΠΊΠΎ-ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π² Π»Π΅Π΄ΡΠ½ΠΎΠΌ ΠΏΠΎΠΊΡΠΎΠ²Π΅ ΠΏΡΠΈ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Π²Π΅ΡΡΠ°, ΠΎΠΊΠ΅Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π²ΠΎΠ»Π½, ΡΠ²Π»Π΅Π½ΠΈΡΡ
ΡΠΆΠ°ΡΠΈΡ ΠΈ ΡΠΎΡΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΠΊΡΡΠΏΠ½ΠΎΠΌΠ°ΡΡΡΠ°Π±Π½ΡΡ
Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΡΡ
Π² Π΄ΡΠ΅ΠΉΡΡΡΡΠ΅ΠΌ Π»ΡΠ΄Ρ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π² ΡΠ°Π±ΠΎΡΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π½ΠΎ-ΡΠ°ΡΡΠΎΡΠ½ΡΠ΅ ΡΠΏΠ΅ΠΊΡΡΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΡ
Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π²ΠΎΠ»Π½ ΡΠ²Π»ΡΡΡΡΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΎΡΠ½ΠΎΡΠΈΡΡ ΠΎΠΏΠΈΡΠ°Π½Π½ΡΠ΅ ΡΠ²Π»Π΅Π½ΠΈΡ ΠΊ Π²ΠΎΠ»Π½Π°ΠΌ Π·ΡΠ±ΠΈ ΠΈ ΠΈΠ½ΡΡΠ°Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΌ Π²ΠΎΠ»Π½Π°ΠΌ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΠΌ Π² ΡΡΠΎΡΠΌΠΎΠ²ΡΡ
ΡΠ°ΠΉΠΎΠ½Π°Ρ
ΠΎΠΊΠ΅Π°Π½ΠΎΠ². ΠΠΎΠ»ΡΡΠ΅Π½Ρ Π½ΠΎΠ²ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΎ Π½ΠΈΠ·ΠΊΠΎΡΠ°ΡΡΠΎΡΠ½ΡΡ
Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎ-ΠΏΠΎΠ»ΡΡΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΡ
Π²ΠΎΠ»Π½Π°Ρ
, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡΡ
ΡΠΆΠ°ΡΠΈΠ΅ΠΌ Π»ΡΠ΄ΠΎΠ² ΠΈ ΠΏΠΎΠ΄Π²ΠΈΠΆΠΊΠ°ΠΌΠΈ ΠΏΠΎ ΡΠ°Π·ΡΡΠ²Π°ΠΌ Π² ΡΠΏΠ»ΠΎΡΠ΅Π½Π½ΠΎΠΌ Π»Π΅Π΄ΡΠ½ΠΎΠΌ ΠΏΠΎΠΊΡΠΎΠ²Π΅. Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΡΠΈΠ»ΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΆΠ°ΡΠΈΡ ΠΈ ΡΠΎΡΠΎΡΠ΅Π½ΠΈΡ Π² Π΄ΡΠ΅ΠΉΡΡΡΡΠΈΡ
Π»ΡΠ΄Π°Ρ
Π‘Π΅Π²Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΠ΅Π΄ΠΎΠ²ΠΈΡΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π°. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π΄Π»Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π»ΡΠ΄ΠΎΠ² Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΊΠ°ΠΊ Π² ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΡ
Π·Π°Π΄Π°ΡΠ°Ρ
, ΡΠ°ΠΊ ΠΈ Π΄Π»Ρ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΡΠΎΠ³Π½ΠΎΠ·Π° ΠΏΠΎΠ³ΠΎΠ΄Ρ ΠΈ ΠΊΠ»ΠΈΠΌΠ°ΡΠ°