53 research outputs found

    Classification of newborn EEG maturity with Bayesian averaging over decision trees

    Get PDF
    EEG experts can assess a newborn’s brain maturity by visual analysis of age-related patterns in sleep EEG. It is highly desirable to make the results of assessment most accurate and reliable. However, the expert analysis is limited in capability to provide the estimate of uncertainty in assessments. Bayesian inference has been shown providing the most accurate estimates of uncertainty by using Markov Chain Monte Carlo (MCMC) integration over the posterior distribution. The use of MCMC enables to approximate the desired distribution by sampling the areas of interests in which the density of distribution is high. In practice, the posterior distribution can be multimodal, and so that the existing MCMC techniques cannot provide the proportional sampling from the areas of interest. The lack of prior information makes MCMC integration more difficult when a model parameter space is large and cannot be explored in detail within a reasonable time. In particular, the lack of information about EEG feature importance can affect the results of Bayesian assessment of EEG maturity. In this paper we explore how the posterior information about EEG feature importance can be used to reduce a negative influence of disproportional sampling on the results of Bayesian assessment. We found that the MCMC integration tends to oversample the areas in which a model parameter space includes one or more features, the importance of which counted in terms of their posterior use is low. Using this finding, we proposed to cure the results of MCMC integration and then described the results of testing the proposed method on a set of sleep EEG recordings

    Bayesian averaging over decision tree models: an application for estimating uncertainty in trauma severity scoring

    Get PDF
    Introduction For making reliable decisions, practitioners need to estimate uncertainties that exist in data and decision models. In this paper we analyse uncertainties of predicting survival probability for patients in trauma care. The existing prediction methodology employs logistic regression modelling of Trauma and Injury Severity Score(external) (TRISS), which is based on theoretical assumptions. These assumptions limit the capability of TRISS methodology to provide accurate and reliable predictions. Methods We adopt the methodology of Bayesian model averaging and show how this methodology can be applied to decision trees in order to provide practitioners with new insights into the uncertainty. The proposed method has been validated on a large set of 447,176 cases registered in the US National Trauma Data Bank in terms of discrimination ability evaluated with receiver operating characteristic (ROC) and precision–recall (PRC) curves. Results Areas under curves were improved for ROC from 0.951 to 0.956 (p = 3.89 × 10−18) and for PRC from 0.564 to 0.605 (p = 3.89 × 10−18). The new model has significantly better calibration in terms of the Hosmer–Lemeshow Hˆ" role="presentation"> statistic, showing an improvement from 223.14 (the standard method) to 11.59 (p = 2.31 × 10−18). Conclusion The proposed Bayesian method is capable of improving the accuracy and reliability of survival prediction. The new method has been made available for evaluation purposes as a web application

    Comparing Robustness of Pairwise and Multiclass Neural-Network Systems for Face Recognition

    Get PDF
    Noise, corruptions and variations in face images can seriously hurt the performance of face recognition systems. To make such systems robust, multiclass neuralnetwork classifiers capable of learning from noisy data have been suggested. However on large face data sets such systems cannot provide the robustness at a high level. In this paper we explore a pairwise neural-network system as an alternative approach to improving the robustness of face recognition. In our experiments this approach is shown to outperform the multiclass neural-network system in terms of the predictive accuracy on the face images corrupted by noise

    The Bayesian Decision Tree Technique with a Sweeping Strategy

    Full text link
    The uncertainty of classification outcomes is of crucial importance for many safety critical applications including, for example, medical diagnostics. In such applications the uncertainty of classification can be reliably estimated within a Bayesian model averaging technique that allows the use of prior information. Decision Tree (DT) classification models used within such a technique gives experts additional information by making this classification scheme observable. The use of the Markov Chain Monte Carlo (MCMC) methodology of stochastic sampling makes the Bayesian DT technique feasible to perform. However, in practice, the MCMC technique may become stuck in a particular DT which is far away from a region with a maximal posterior. Sampling such DTs causes bias in the posterior estimates, and as a result the evaluation of classification uncertainty may be incorrect. In a particular case, the negative effect of such sampling may be reduced by giving additional prior information on the shape of DTs. In this paper we describe a new approach based on sweeping the DTs without additional priors on the favorite shape of DTs. The performances of Bayesian DT techniques with the standard and sweeping strategies are compared on a synthetic data as well as on real datasets. Quantitatively evaluating the uncertainty in terms of entropy of class posterior probabilities, we found that the sweeping strategy is superior to the standard strategy

    A Cascade Neural Network Architecture investigating Surface Plasmon Polaritons propagation for thin metals in OpenMP

    Full text link
    Surface plasmon polaritons (SPPs) confined along metal-dielectric interface have attracted a relevant interest in the area of ultracompact photonic circuits, photovoltaic devices and other applications due to their strong field confinement and enhancement. This paper investigates a novel cascade neural network (NN) architecture to find the dependance of metal thickness on the SPP propagation. Additionally, a novel training procedure for the proposed cascade NN has been developed using an OpenMP-based framework, thus greatly reducing training time. The performed experiments confirm the effectiveness of the proposed NN architecture for the problem at hand

    Bayesian averaging over Decision Tree models for trauma severity scoring

    Get PDF
    Health care practitioners analyse possible risks of misleading decisions and need to estimate and quantify uncertainty in predictions. We have examined the “gold” standard of screening a patient's conditions for predicting survival probability, based on logistic regression modelling, which is used in trauma care for clinical purposes and quality audit. This methodology is based on theoretical assumptions about data and uncertainties. Models induced within such an approach have exposed a number of problems, providing unexplained fluctuation of predicted survival and low accuracy of estimating uncertainty intervals within which predictions are made. Bayesian method, which in theory is capable of providing accurate predictions and uncertainty estimates, has been adopted in our study using Decision Tree models. Our approach has been tested on a large set of patients registered in the US National Trauma Data Bank and has outperformed the standard method in terms of prediction accuracy, thereby providing practitioners with accurate estimates of the predictive posterior densities of interest that are required for making risk-aware decisions
    • 

    corecore