811 research outputs found

    Results of the post flash-flood disaster investigations in the Transylvanian Depression (Romania) during the last decade (2001–2010)

    Get PDF
    Flash-flood disasters are very rare in the Transylvanian Depression. In the last decades just three events were signalled in the study area, all of them during the last 10 years. The flash floods occurring in the study area during the last decade had a significant impact on several localities situated at the Transylvanian Depression border. Based on the post flash-flood investigation, the present study intends to find out the main characteristics of the flash floods and the causes that have led to disasters in a region rarely affected by such kinds of events. Analyzing the hydrological data, it has been seen that the maximum intensity of the flash floods was observed in the upper and middle basins. By comparing the unit peak discharges from the studied region with other specific peak discharges related to the significant flash floods from Romania, it was noticed that the events from the Transylvanian Depression have moderate to low intensity. On the other hand, the results showed that besides high stream power and unexpected character common to flash floods, the inappropriate flood risk management measures increased the dimension of the negative effects, leading to tens of lives lost and economical damages of tens of millions of dollars

    Characterization of high-temperature PbTe p-n junctions prepared by thermal diffusion and by ion-implantation

    Full text link
    We describe here the characteristics of two types of high-quality PbTe p-n-junctions, prepared in this work: (1) by thermal diffusion of In4Te3 gas (TDJ), and (2) by ion implantation (implanted junction, IJ) of In (In-IJ) and Zn (Zn-IJ). The results, as presented here, demonstrate the high quality of these PbTe diodes. Capacitance-voltage and current-voltage characteristics have been measured. The measurements were carried out over a temperature range from ~ 10 K to ~ 180 K. The latter was the highest temperature, where the diode still demonstrated rectifying properties. This maximum operating temperature is higher than any of the earlier reported results. The saturation current density, J0, in both diode types, was ~ 10^-5 A/cm2 at 80 K, while at 180 K J0 ~ 10^-1 A/cm2 in TDJ and ~ 1 A/cm2 in both ion-implanted junctions. At 80 K the reverse current started to increase markedly at a bias of ~ 400 mV for TDJ, and at ~550 mV for IJ. The ideality factor n was about 1.5-2 for both diode types at 80 K. The analysis of the C-V plots shows that the junctions in both diode types are linearly graded. The analysis of the C-V plots allows also determining the height of the junction barrier, the concentrations and the concentration gradient of the impurities, and the temperature dependence of the static dielectric constant. The zero-bias-resistance x area products (R0Ae) at 80 K are: 850 OHMcm2 for TDJ, 250 OHMcm2 for In-IJ, and ~ 80 OHMcm2 for Zn-IJ, while at 180 K R0Ae ~ 0.38 OHMcm2 for TDJ, and ~ 0.1 OHMcm2 for IJ. The estimated detectivity is: D* ~ 10^10 cmHz^(1/2)/W up to T=140 K, determined mainly by background radiation, while at T=180 K, D* decreases to 108-107 cmHz^(1/2)/W, and is determined by the Johnson noise

    A combined theoretical and experimental study of the low temperature properties of BaZrO3

    Full text link
    Low temperature properties of BaZrO3 are revealed by combining experimental techniques (X-ray diffraction, neutron scattering and dielectric measurements) with theoretical first-principles-based methods (total energy and linear response calculations within density functional theory, and effective Hamiltonian approaches incorporating/neglecting zero-point phonon vibrations). Unlike most of the perovskite systems, BaZrO3 does not undergo any (long-range-order) structural phase transition and thus remains cubic and paraelectric down to 2 K, even when neglecting zero-point phonon vibrations. On the other hand, these latter pure quantum effects lead to a negligible thermal dependency of the cubic lattice parameter below ~ 40 K. They also affect the dielectricity of BaZrO3 by inducing an overall saturation of the real part of the dielectric response, for temperatures below ~ 40 K. Two fine structures in the real part, as well as in the imaginary part, of dielectric response are further observed around 50-65 K and 15 K, respectively. Microscopic origins (e.g., unavoidable defects and oxygen octahedra rotation occurring at a local scale) of such anomalies are suggested. Finally, possible reasons for the facts that some of these dielectric anomalies have not been previously reported in the better studied KTaO3 and SrTiO3 incipient ferroelectrics are also discussed.Comment: 8 pages, 5 figures, submitted to Physical Review

    Dynamics of relaxor ferroelectrics

    Full text link
    We study a dynamic model of relaxor ferroelectrics based on the spherical random-bond---random-field model and the Langevin equations of motion. The solution to these equations is obtained in the long-time limit where the system reaches an equilibrium state in the presence of random local electric fields. The complex dynamic linear and third-order nonlinear susceptibilities χ1(ω)\chi_1(\omega) and χ3(ω)\chi_3(\omega), respectively, are calculated as functions of frequency and temperature. In analogy with the static case, the dynamic model predicts a narrow frequency dependent peak in χ3(T,ω)\chi_3(T,\omega), which mimics a transition into a glass-like state.Comment: 15 pages, Revtex plus 5 eps figure

    Characterization and Weathering of the Building Materials of Sanctuaries in the Archaeological Site of Dion, Greece

    Get PDF
    The sanctuaries of Demeter and Asklepios are part of the Dion archaeological site that sits among the eastern foothills of Mount Olympus. The main building materials are limestones and conglomerates. Sandstones, marbles, and ceramic plinths were also used. The materials consist mainly of calcite and/or dolomite, whereas the deteriorated surfaces contain also secondary and recrystallized calcite and dolomite, gypsum, various inorganic compounds, fluoroapatite, microorganisms and other organic compounds. Cracks and holes were observed in various parts of the stones. The influence of specific weathering agents and factors to the behavior of the materials was examined. The particular environmental conditions in Dion combine increased moisture and rain fall, insolation and great temperature differences, abundance of intensive surface and underground water bodies in the surrounding area, an area full of plants and trees, therefore, they can cause extensive chemical, biological and mechanical decay of the monuments. The following physical characteristics of the building materials have been studied: bulk density, open porosity, pore size distribution, water absorption and desorption, capillary absorption and desorption. The chemical composition of bulk precipitation, surface and underground water was investigated. The salts presence and crystallization was examined. The influence of the water presence to the behavior of the materials was examined by in situ IR thermometer measurements. Temperature values increased from the lower to the upper parts of the building stones and they significantly depend on the orientation of the walls. The results indicate the existence of water in the bulk of the materials due to capillary penetration. The existence of water in the bulk of the materials due to capillary penetration, the cycles of wet-dry conditions, correlated with the intensive surface and underground water presence in the whole surrounding area, lead to partial dissolution-recrystallization of the carbonate material and loss of the structural cohesion and the surface stability

    Carbon dioxide adsorption and interaction with formation fluids of Jordanian unconventional reservoirs

    Get PDF
    Shales are mostly unexploited energy resources. However, the extraction and production of their hydrocarbons require innovative methods. Applications involving carbon dioxide in shales could combine its potential use in oil recovery with its storage in view of its impact on global climate. The success of these approaches highly depends on various mechanisms taking place in the rock pores simultaneously. In this work, properties governing these mechanisms are presented at technically relevant conditions. The pendant and sessile drop methods are utilized to measure interfacial tension and wettability, respectively. The gravimetric method is used to quantify CO2 adsorption capacity of shale and gas adsorption kinetics is evaluated to determine diffusion coefficients. It is found that interfacial properties are strongly affected by the operating pressure. The oil-CO2 interfacial tension shows a decrease from approx. 21 mN/m at 0.1 MPa to around 3 mN/m at 20 MPa. A similar trend is observed in brine-CO2 systems. The diffusion coefficient is observed to slightly increase with pressure at supercritical conditions. Finally, the contact angle is found to be directly related to the gas adsorption at the rock surface: Up to 3.8 wt% of CO2 is adsorbed on the shale surface at 20 MPa and 60 °C where a maximum in contact angle is also found. To the best of the author’s knowledge, the affinity of calcite-rich surfaces toward CO2 adsorption is linked experimentally to the wetting behavior for the first time. The results are discussed in terms of CO2 storage scenarios occurring optimally at 20 MPa

    Magnetodielectric coupling and phonon properties of compressively strained EuTiO3 thin films deposited on LSAT

    Get PDF
    Compressively strained epitaxial (001) EuTiO3 thin films of tetragonal symmetry have been deposited on (001) (LaAlO3)_0.29-(SrAl_{1/2}Ta_{1/2}O3)_0.71 (LSAT) substrates by reactive molecular-beam epitaxy. Enhancement of the Neel temperature by 1 K with 0.9% compressive strain was revealed. The polar phonons ofthe films have been investigated as a function of temperature and magnetic field by means of infrared reflectance spectroscopy. All three infrared active phonons show strongly stiffened frequencies compared to bulk EuTiO3 in accordance with first principles calculations. The phonon frequencies exhibit gradual softening on cooling leading to an increase in static permittivity. A new polar phonon with frequency near the TO1 soft mode was detected below 150 K. The new mode coupled with the TO1 mode was assigned as the optical phonon from the Brillouin zone edge, which is activated in infrared spectra due to an antiferrodistortive phase transition and due to simultaneous presence of polar and/or magnetic nanoclusters. In the antiferromagnetic phase we have observed a remarkable softening of the lowest-frequency polar phonon under an applied magnetic field, which qualitatively agrees with first principles calculations. This demonstrates the strong spin-phonon coupling in EuTiO3, which is responsible for the pronounced dependence of its static permittivity on magnetic field in the antiferromagnetic phase.Comment: Submitted to Phys. Rev.

    Stability and electronic structure of the complex K2_2PtCl6_6 structure-type hydrides

    Full text link
    The stability and bonding of the ternary complex K2_2PtCl6_6 structure hydrides is discussed using first principles density functional calculations. The cohesion is dominated by ionic contributions, but ligand field effects are important, and are responsible for the 18-electron rule. Similarities to oxides are discussed in terms of the electronic structure. However, phonon calculations for Sr2_2RuH6_6 also show differences, particularly in the polarizability of the RuH6_6 octahedra. Nevertheless, the yet to be made compounds Pb2_2RuH6_6 and Be2_2FeH6_6 are possible ferroelectrics. The electronic structure and magnetic properties of the decomposition product, FeBe2_2 are reported. Implications of the results for H storage are discussed

    Hybrid paramagnon phonon modes at elevated temperatures in EuTiO3

    Full text link
    EuTiO3 (ETO) has recently experienced an enormous revival of interest because of its possible multiferroic properties which are currently in the focus of research. Unfortunately ETO is an unlikely candidate for enlarged multifunctionality since the mode softening - typical for ferroelectrics - remains incomplete, and the antiferromagnetic properties appear at 5.5K only. However, a strong coupling between lattice and Eu spins exists and leads to the appearance of a magnon-phonon-hybrid mode at elevated temperatures as evidenced by electron paramagnetic resonance (EPR), muon spin rotation ({\mu}SR) experiments and model predictions based on a coupled spin-polarizability Hamiltonian. This novel finding supports the notion of strong magneto-dielectric (MD) effects being realized in ETO and opens new strategies in material design and technological applications.Comment: 9 pages, 4 figure
    corecore