81 research outputs found

    A Virus-Encoded Cell–Cell Fusion Machine Dependent on Surrogate Adhesins

    Get PDF
    The reovirus fusion-associated small transmembrane (FAST) proteins function as virus-encoded cellular fusogens, mediating efficient cell–cell rather than virus–cell membrane fusion. With ectodomains of only ∼20–40 residues, it is unclear how such diminutive viral fusion proteins mediate the initial stages (i.e. membrane contact and close membrane apposition) of the fusion reaction that precede actual membrane merger. We now show that the FAST proteins lack specific receptor-binding activity, and in their natural biological context of promoting cell–cell fusion, rely on cadherins to promote close membrane apposition. The FAST proteins, however, are not specifically reliant on cadherin engagement to mediate membrane apposition as indicated by their ability to efficiently utilize other adhesins in the fusion reaction. Results further indicate that surrogate adhesion proteins that bridge membranes as close as 13 nm apart enhance FAST protein-induced cell–cell fusion, but active actin remodelling is required for maximal fusion activity. The FAST proteins are the first example of membrane fusion proteins that have specifically evolved to function as opportunistic fusogens, designed to exploit and convert naturally occurring adhesion sites into fusion sites. The capacity of surrogate, non-cognate adhesins and active actin remodelling to enhance the cell–cell fusion activity of the FAST proteins are features perfectly suited to the structural and functional evolution of these fusogens as the minimal fusion component of a virus-encoded cellular fusion machine. These results also provide a basis for reconciling the rudimentary structure of the FAST proteins with their capacity to fuse cellular membranes

    Analysis of Spatial Point Patterns in Nuclear Biology

    Get PDF
    There is considerable interest in cell biology in determining whether, and to what extent, the spatial arrangement of nuclear objects affects nuclear function. A common approach to address this issue involves analyzing a collection of images produced using some form of fluorescence microscopy. We assume that these images have been successfully pre-processed and a spatial point pattern representation of the objects of interest within the nuclear boundary is available. Typically in these scenarios, the number of objects per nucleus is low, which has consequences on the ability of standard analysis procedures to demonstrate the existence of spatial preference in the pattern. There are broadly two common approaches to look for structure in these spatial point patterns. First a spatial point pattern for each image is analyzed individually, or second a simple normalization is performed and the patterns are aggregated. In this paper we demonstrate using synthetic spatial point patterns drawn from predefined point processes how difficult it is to distinguish a pattern from complete spatial randomness using these techniques and hence how easy it is to miss interesting spatial preferences in the arrangement of nuclear objects. The impact of this problem is also illustrated on data related to the configuration of PML nuclear bodies in mammalian fibroblast cells

    Crosstalk between Medulloblastoma Cells and Endothelium Triggers a Strong Chemotactic Signal Recruiting T Lymphocytes to the Tumor Microenvironment

    Get PDF
    Cancer cells can live and grow if they succeed in creating a favorable niche that often includes elements from the immune system. While T lymphocytes play an important role in the host response to tumor growth, the mechanism of their trafficking to the tumor remains poorly understood. We show here that T lymphocytes consistently infiltrate the primary brain cancer, medulloblastoma. We demonstrate, both in vitro and in vivo, that these T lymphocytes are attracted to tumor deposits only after the tumor cells have interacted with tumor vascular endothelium. Macrophage Migration Inhibitory Factor (MIF)” is the key chemokine molecule secreted by tumor cells which induces the tumor vascular endothelial cells to secrete the potent T lymphocyte attractant “Regulated upon Activation, Normal T-cell Expressed, and Secreted (RANTES).” This in turn creates a chemotactic gradient for RANTES-receptor bearing T lymphocytes. Manipulation of this pathway could have important therapeutic implications

    Borderline Personality Disorder Symptoms in College Students: The Complex Interplay between Alexithymia, Emotional Dysregulation and Rumination.

    Get PDF
    Both Emotional Cascade Theory and Linehan's Biosocial Theory suggest dysregulated behaviors associated with Borderline Personality Disorder (BPD) emerge, in part, because of cycles of rumination, poor emotional recognition and poor emotion regulation. In this study we examined relationships between rumination, alexithymia, and emotion regulation in predicting dysregulated behaviors associated with BPD (e.g. self-harm, substance use, aggression), and explored both indirect and moderating effects among these variables. The sample comprised 2261 college students who completed self-report measures of the aforementioned constructs. BPD symptoms, stress, family psychological illness, and alexithymia exerted direct effects on behaviors. Symptoms had an indirect effect on behaviors through rumination, alexithymia and emotional dysregulation. In addition, the relationship between symptoms and dysregulated behaviors was conditional on level of rumination and alexithymia. Implications for early identification and treatment of BPD and related behaviors in college settings are discussed

    CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression

    No full text
    Chimeric antigen receptor (CAR) T-cells targeting CD19 demonstrate remarkable efficacy in treating B-lineage acute lymphoblastic leukemia (BL-ALL), yet up to 39% of treated patients relapse with CD19(−) disease. We report that CD19(−) escape is associated with downregulation, but preservation, of targetable expression of CD20 and CD22. Accordingly, we reasoned that broadening the spectrum of CD19CAR T-cells to include both CD20 and CD22 would enable them to target CD19(−) escape BL-ALL while preserving their upfront efficacy. We created a CD19/20/22-targeting CAR T-cell by coexpressing individual CAR molecules on a single T-cell using one tricistronic transgene. CD19/20/22CAR T-cells killed CD19(−) blasts from patients who relapsed after CD19CAR T-cell therapy and CRISPR/Cas9 CD19 knockout primary BL-ALL both in vitro and in an animal model, while CD19CAR T-cells were ineffective. At the subcellular level, CD19/20/22CAR T-cells formed dense immune synapses with target cells that mediated effective cytolytic complex formation, were efficient serial killers in single-cell tracking studies, and were as efficacious as CD19CAR T-cells against primary CD19(+) disease. In conclusion, independent of CD19 expression, CD19/20/22CAR T-cells could be used as salvage or front-line CAR therapy for patients with recalcitrant disease
    corecore