436 research outputs found
Microscopic evaluation of the pairing gap
We discuss the relevant progress that has been made in the last few years on
the microscopic theory of the pairing correlation in nuclei and the open
problems that still must be solved in order to reach a satisfactory description
and understanding of the nuclear pairing. The similarities and differences with
the nuclear matter case are emphasized and described by few illustrative
examples. The comparison of calculations of different groups on the same set of
nuclei show, besides agreements, also discrepancies that remain to be
clarified. The role of the many-body correlations, like screening, that go
beyond the BCS scheme, is still uncertain and requires further investigation.Comment: 21 pages,7 figures; minor modification, accepted for publication in
J. Phys.
Symmetrical Josephson vortex interferometer as an advanced ballistic single-shot detector
We consider a ballistic detector formed in an interferometer manner which operational principle relies on Josephson vortex scattering at a measurement potential. We propose an approach to symmetrize the detector scheme and explore arising advantages in the signal-to-noise ratio and in the back-action on a measured object by means of recently presented numerical and analytical methods for modeling of a soliton scattering dynamics in the presence of thermal fluctuations. The obtained characteristics for experimentally relevant parameters reveal practical applicability of the considered schemes including possibility of coupling with standard digital rapid single flux quantum circuits
- …