6 research outputs found

    ΠŸΡ€ΠΈΡ‡ΠΈΠ½Ρ‹ Π»ΠΎΠΆΠ½ΠΎΠΉ диагностики ΠΏΠΎΠ»ΠΈΠΌΠΈΠΎΠ·ΠΈΡ‚Π° Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с дисфСрлинопатиСй: клиничСский случай

    Get PDF
    Differential diagnosis of inflammatory myopathies with hereditary muscular dystrophies accompanied by a secondary inflammatory process is a time‑consuming clinical and pathomorphological task. In particular, false diagnosis of polymyositis in patients with dysferlinopathy reaches 25 % of cases.A 40‑year‑old female patient with a limb‑girdle phenotype of dysferlinopathy, initially diagnosed as polymyositis, is presented. The reasons that led to the erroneous diagnosis were: sporadic case; subacute onset; proximal muscle weakness; myalgia, which stopped on the glucocorticosteroid therapy; high levels of creatine phosphokinase (up to 17 times); the presence of lymphocytic‑macrophage infiltrate in the muscle biopsy and the absence of magnetic resonance imaging data in primary examination of the patient.The refractoriness of clinical and laboratory signs to complex immunosuppressive therapy was the reason for revising the muscle biopsy with typing of the inflammatory infiltrate. The predominantly unexpressed perivascular infiltrate was characterized by the predominance of macrophages and, to a lesser extent, CD4+, which indicated the secondary nature of the inflammation in the muscle observed in some hereditary muscular dystrophies. When conducting an immunohistochemical reaction, the absence of the dysferlin protein in the sarcoplasmic membrane was revealed.Whole‑exome sequencing (NGS) revealed a mutation in exon 39 of the DYSF gene (p.Gln1428Ter) in the heterozygous state, which leads to the appearance of a stop codon and premature termination of protein translation. MLPA method registered 3 copies of exons 18, 19, 20, 22, 24 of the DYSF gene.Thus, this clinical example reflects the main methodological errors and possible effects of immunosuppressive therapy in patients with dysferlinopathy.Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ диагностика Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΈΠΎΠΏΠ°Ρ‚ΠΈΠΉ, ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰ΠΈΡ…ΡΡ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹ΠΌ Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ процСссом, с наслСдствСнными ΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹ΠΌΠΈ дистрофиями являСтся слоТной ΠΈ Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΎΠΉ клинико‑патоморфологичСской Π·Π°Π΄Π°Ρ‡Π΅ΠΉ. Π’ частности, лоТная диагностика ΠΏΠΎΠ»ΠΈΠΌΠΈΠΎΠ·ΠΈΡ‚Π° Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с дисфСрлинопатиСй достигаСт 25 % случаСв.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΊΠ° 40 Π»Π΅Ρ‚ с поясно‑конСчностным Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠΌ дисфСрлинопатии, ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎ диагностированной ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΈΠΌΠΈΠΎΠ·ΠΈΡ‚. ΠŸΡ€ΠΈΡ‡ΠΈΠ½Ρ‹, повлСкшиС ΠΎΡˆΠΈΠ±ΠΎΡ‡Π½ΡƒΡŽ диагностику: спорадичСскоС происхоТдСниС; подострый Π΄Π΅Π±ΡŽΡ‚; ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Π°Ρ ΠΌΡ‹ΡˆΠ΅Ρ‡Π½Π°Ρ ΡΠ»Π°Π±ΠΎΡΡ‚ΡŒ; миалгия, ΠΊΡƒΠΏΠΈΡ€ΠΎΠ²Π°Π²ΡˆΠ°ΡΡΡ Π½Π° Ρ„ΠΎΠ½Π΅ Π³Π»ΡŽΠΊΠΎΠΊΠΎΡ€Ρ‚ΠΈΠΊΠΎΡΡ‚Π΅Ρ€ΠΎΠΈΠ΄Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ; ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ уровня крСатинфосфокиназы (Π΄ΠΎ 17 Ρ€Π°Π·); Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°Ρ€Π½ΠΎβ€‘ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ‚Π° Π² ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΌ Π±ΠΈΠΎΠΏΡ‚Π°Ρ‚Π΅ ΠΈ отсутствиС Π΄Π°Π½Π½Ρ‹Ρ… магнитно‑рСзонансной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΌ обслСдовании.Π Π΅Ρ„Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎΡΡ‚ΡŒ клинико‑лабораторных ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΊ комплСксной иммуносупрСссивной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ послуТила ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ пСрСсмотра Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² биопсии ΠΌΡ‹ΡˆΡ†Ρ‹ с Ρ‚ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ‚Π°. НСвыраТСнный, прСимущСствСнно пСриваскулярный ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ‚ характСризовался ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ² ΠΈ, Π² мСньшСй стСпСни, CD4+, Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π»ΠΎ Π½Π° Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ воспалСния Π² ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, наблюдаСмого ΠΏΡ€ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… наслСдствСнных ΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹Ρ… дистрофиях. ΠŸΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ иммуногистохимичСской Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ выявлСно отсутствиС Π±Π΅Π»ΠΊΠ° дисфСрлина Π² саркоплазматичСской ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅.Π’ Ρ…ΠΎΠ΄Π΅ полноэкзомного сСквСнирования (NGS) выявлСна мутация Π² 39‑м экзонС Π³Π΅Π½Π° DYSF (p.Gln1428Ter) Π² Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ·ΠΈΠ³ΠΎΡ‚Π½ΠΎΠΌ состоянии, приводящая ΠΊ появлСнию стоп‑кодона ΠΈ ΠΏΡ€Π΅ΠΆΠ΄Π΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Ρ†ΠΈΠΈ трансляции Π±Π΅Π»ΠΊΠ°. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ MLPA зарСгистрировано ΠΏΠΎ 3 ΠΊΠΎΠΏΠΈΠΈ 18, 19, 20, 22, 24‑го экзонов Π³Π΅Π½Π° DYSF. ΠšΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ случай ΠΎΡ‚Ρ€Π°ΠΆΠ°Π΅Ρ‚ основныС ошибки ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² обслСдования ΠΈ эффСктивности иммуносупрСссивной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с дисфСрлинопатиСй

    Клинико-гСнСтичСскиС характСристики Ρ€Π°Π½Π½Π΅ΠΉ эпилСптичСской энцСфалопатии 66‑го Ρ‚ΠΈΠΏΠ° (ΠΎΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΈ собствСнноС наблюдСниС)

    Get PDF
    Early epileptic encephalopathy-66 was first diagnosed in a male patient from Russia using whole-exome sequencing. Early epileptic encephalopathy- 66 is a unique disorder in the group of early epileptic encephalopathies. The same recurrent heterozygous variant of the nucleotide sequence was found in all known patients, but the severity of seizures and dysmorphic signs significantly vary between patients. The current study of a recurrent pathogenic variant in PACS2 gene expands the phenotype spectrum of early epileptic encephalopathy-66 and will improve the management of patients with that disorder in Russia in the future.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ ΠΏΠ΅Ρ€Π²ΠΎΠ΅ описаниС ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-гСнСтичСских характСристик российского больного с Ρ€Π°Π½Π½Π΅ΠΉ эпилСптичСской энцСфалопатиСй 66‑го Ρ‚ΠΈΠΏΠ°. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ полноэкзомного сСквСнирования ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° Ρ€Π°Π½Π΅Π΅ описанная гСтСрозиготная мутация NM_001100913.2: c.625G>A (p.Glu209Lys) Π² Π³Π΅Π½Π΅ PACS2. Π”Π°Π½Π½ΠΎΠ΅ ΠΌΠΎΠ½ΠΎΠ³Π΅Π½Π½ΠΎΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ являСтся ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ Ρ€Π°Π½Π½ΠΈΡ… эпилСптичСских энцСфалопатий – Ρƒ всСх ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² обнаруТиваСтся ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΉ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π½ΠΎ клиничСскиС проявлСния ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΏΠΎ стСпСни тяТСсти ΠΈ выраТСнности дизморфичСских ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ², Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄- ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ обусловлСно Ρ€Π°Π·Π½Ρ‹ΠΌ гСнСтичСским Ρ„ΠΎΠ½ΠΎΠΌ. ΠšΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ сСрий случаСв Ρ€Π΅ΠΊΡƒΡ€Ρ€Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² позволяСт ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Π°ΠΊΡ‚ΠΈΠΊΡƒ вСдСния Π½ΠΎΠ²Ρ‹Ρ… ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ ΡƒΠΆΠ΅ извСстного гСнСтичСского Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°

    Clinical and genetic characteristics of the early 66th type epileptic encephalopathy (literature review and own observation)

    Get PDF
    Early epileptic encephalopathy-66 was first diagnosed in a male patient from Russia using whole-exome sequencing. Early epileptic encephalopathy- 66 is a unique disorder in the group of early epileptic encephalopathies. The same recurrent heterozygous variant of the nucleotide sequence was found in all known patients, but the severity of seizures and dysmorphic signs significantly vary between patients. The current study of a recurrent pathogenic variant in PACS2 gene expands the phenotype spectrum of early epileptic encephalopathy-66 and will improve the management of patients with that disorder in Russia in the future

    Genetic screening of an endemic mutation in the DYSF gene in an isolated, mountainous population in the Republic of Dagestan

    No full text
    Abstract Background Dysferlinopathy has a high prevalence in relatively isolated ethnic groups where consanguineous marriages are characteristic and/or the founder effect exists. However, the frequency of endemic mutations in most isolates has not been investigated. Methods The prevalence of the pathological DYSF gene variant (NM_003494.4); c.200_201delinsAT, p. Val67Asp (rs121908957) was investigated in an isolated Avar population in the Republic of Dagestan. Genetic screenings were conducted in a remote mountainous region characterized by a high level of consanguinity among its inhabitants. In total, 746 individuals were included in the screenings. Results This pathological DYSF gene variant causes two primary phenotypes of dysferlinopathy: limb‐girdle muscular dystrophy (LGMD) type R2 and Miyoshi muscular dystrophy type 1. Results indicated a high prevalence of the allele at 14% (95% confidence interval [CI]: 12–17; 138 out of 1518 alleles), while the allele in the homozygous state was detected in 29 casesβ€”3.8% (CI: 2.6–5.4). The population load for dysferlinopathy was 832.3 ± 153.9 per 100,000 with an average prevalence of limb‐girdle muscular dystrophies ranging from 0.38 ± 0.38 to 5.93 ± 1.44 per 100,000. Conclusion A significant burden of the allele was due to inbreeding, as evidenced by a deficiency of heterozygotes and the Wright fixation index equal to 0.14 (CI 0.06–0.23)

    Biallelic variants in PPP1R13L cause paediatric dilated cardiomyopathy

    No full text
    Childhood dilated cardiomyopathy (DCM) is a leading cause of heart failure requiring cardiac transplantation and approximately 5% of cases result in sudden death. Knowledge of the underlying genetic cause can aid prognostication and clinical management and enables accurate recurrence risk counselling for the family. Here we used genomic sequencing to identify the causative genetic variant(s) in families with children affected by severe DCM. In an international collaborative effort facilitated by GeneMatcher, biallelic variants in PPP1R13L were identified in seven children with severe DCM from five unrelated families following exome or genome sequencing and inheritance-based variant filtering. PPP1R13L encodes inhibitor of apoptosis-stimulating protein of p53 protein (iASPP). In addition to roles in apoptosis, iASPP acts as a regulator of desmosomes and has been implicated in inflammatory pathways. DCM presented early (mean: 2?years 10?months; range: 3?months-9?years) and was progressive, resulting in death (n = 3) or transplant (n = 3), with one child currently awaiting transplant. Genomic sequencing technologies are valuable for the identification of novel and emerging candidate genes. Biallelic variants in PPP1R13L were previously reported in a single consanguineous family with paediatric DCM. The identification here of a further five families now provides sufficient evidence to support a robust gene-disease association between PPP1R13L and severe paediatric DCM. The PPP1R13L gene should be included in panel-based genetic testing for paediatric DCM.The article is available via Open Access. Click on the 'Additional link' above to access the full-text.Published version, accepted version, submitted versio
    corecore