61 research outputs found

    Statistical Analysis of Precipitation Events

    Full text link
    In the present paper we demonstrate the results of a statistical analysis of some characteristics of precipitation events and propose a kind of a theoretical explanation of the proposed models in terms of mixed Poisson and mixed exponential distributions based on the information-theoretical entropy reasoning. The proposed models can be also treated as the result of following the popular Bayesian approach.Comment: 5 pages, 4 figures; ICNAAM 201

    Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network

    Get PDF
    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (~0.004–0.005), even for strong winds over 10 m s<sup>−1</sup>. The relationships show significant scatter (correlation coefficients typically in the range 0.3–0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

    Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multi-product ensemble

    Get PDF
    Historical trends in the direction and magnitude of ocean surface wave height, period, or direction are debated due to diverse data, time-periods, or methodologies. Using a consistent community-driven ensemble of global wave products, we quantify and establish regions with robust trends in global multivariate wave fields between 1980 and 2014. We find that about 30-40% of the global ocean experienced robust seasonal trends in mean and extreme wave height, period, and direction. Most of the Southern Hemisphere exhibited strong upward-trending wave heights (1-2 cm per year) and periods during winter and summer. Ocean basins with robust positive trends are far larger than those with negative trends. Historical trends calculated over shorter periods generally agree with satellite records but vary from product to product, with some showing a consistently negative bias. Variability in trends across products and time-periods highlights the importance of considering multiple sources when seeking robust change analyses

    Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multi-product ensemble

    Get PDF
    Historical trends in the direction and magnitude of ocean surface wave height, period, or direction are debated due to diverse data, time-periods, or methodologies. Using a consistent community-driven ensemble of global wave products, we quantify and establish regions with robust trends in global multivariate wave fields between 1980 and 2014. We find that about 30–40% of the global ocean experienced robust seasonal trends in mean and extreme wave height, period, and direction. Most of the Southern Hemisphere exhibited strong upward-trending wave heights (1–2 cm per year) and periods during winter and summer. Ocean basins with robust positive trends are far larger than those with negative trends. Historical trends calculated over shorter periods generally agree with satellite records but vary from product to product, with some showing a consistently negative bias. Variability in trends across products and time-periods highlights the importance of considering multiple sources when seeking robust change analyses.publishedVersio

    A global ensemble of ocean wave climate statistics from contemporary wave reanalysis and hindcasts

    Get PDF
    There are numerous global ocean wave reanalysis and hindcast products currently being distributed and used across different scientific fields. However, there is not a consistent dataset that can sample across all existing products based on a standardized framework. Here, we present and describe the first coordinated multi-product ensemble of present-day global wave fields available to date. This dataset, produced through the Coordinated Ocean Wave Climate Project (COWCLIP) phase 2, includes general and extreme statistics of significant wave height (Hs), mean wave period (Tm) and mean wave direction (θm) computed across 1980–2014, at different frequency resolutions (monthly, seasonally, and annually). This coordinated global ensemble has been derived from fourteen state-of-the-science global wave products obtained from different atmospheric reanalysis forcing and downscaling methods. This data set has been processed, under a specific framework for consistency and quality, following standard Data Reference Syntax, Directory Structures and Metadata specifications. This new comprehensive dataset provides support to future broad-scale analysis of historical wave climatology and variability as well as coastal risk and vulnerability assessments across offshore and coastal engineering applications

    Influence of the ocean surface temperature and sea ice concentration on regional climate changes in Eurasia in recent decades

    Get PDF
    Numerical experiments with the ECHAM5 atmospheric general circulation model have been performed in order to simulate the influence of changes in the ocean surface temperature (OST) and sea ice concentration (SIC) on climate characteristics in regions of Eurasia. The sensitivity of winter and summer climates to OST and SIC variations in 1998-2006 has been investigated and compared to those in 1968-1976. These two intervals correspond to the maximum and minimum of the Atlantic Long-Period Oscillation (ALO) index. Apart from the experiments on changes in the OST and SIC global fields, the experiments on OST anomalies only in the North Atlantic and SIC anomalies in the Arctic for the specified periods have been analyzed. It is established that temperature variations in Western Europe are explained by OST and SIC variations fairly well, whereas the warmings in Eastern Europe and Western Siberia, according to model experiments, are substantially (by a factor of 2-3) smaller than according to observational data. Winter changes in the temperature regime in continental regions are controlled mainly by atmospheric circulation anomalies. The model, on the whole, reproduces the empirical structure of changes in the winter field of surface pressure, in particular, the pressure decrease in the Caspian region; however, it substantially (approximately by three times) underestimates the range of changes. Summer temperature variations in the model are characterized by a higher statistical significance than winter ones. The analysis of the sensitivity of the climate in Western Europe to SIC variations alone in the Arctic is an important result of the experiments performed. It is established that the SIC decrease and a strong warming over the Barents Sea in the winter period leads to a cooling over vast regions of the northern part of Eurasia and increases the probability of anomalously cold January months by two times and more (for regions in Western Siberia). This effect is caused by the formation of the increased-pressure region with a center over the southern boundary of the Barents Sea during the SIC decrease and an anomalous advection of cold air masses from the northeast. This result indicates that, to estimate the ALO actions (as well as other long-scale climatic variability modes) on the climate of Eurasia, it is basically important to take into account (or correctly reproduce) Arctic sea ice changes in experiments with climatic models

    Global warming continues

    Full text link
    • …
    corecore