979 research outputs found

    Dynamics of circular arrangements of vorticity in two dimensions

    Get PDF
    The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical co-rotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long-lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to a break down into individual vortices. In the pre-annular stage, vortical structures in a viscous flow are found here to tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Interestingly at higher Reynolds numbers, the merger of an odd number of vortices is found to proceed very differently from that of an even number. The former process is rapid and chaotic whereas the latter proceeds more slowly via pairing events. The annular vortex takes the form of a generalised Lamb-Oseen vortex (GLO), and diffuses inwards until it forms a standard Lamb-Oseen vortex. For lower Reynolds number, the numerical (fully nonlinear) evolution of the GLO vortex follows exactly the analytical evolution until merger. At higher Reynolds numbers, the annulus goes through instabilities whose nonlinear stages show a pronounced difference between even and odd mode disturbances. It is hoped that the present findings, that multiple vortex merger is qualitatively different from the merger of two vortices, will motivate studies on how multiple vortex interactions affect the inverse cascade in two-dimensional turbulence.Comment: Abstract truncated. Paper to appear in Physical Review

    Genus Zero Correlation Functions in c<1 String Theory

    Full text link
    We compute N-point correlation functions of pure vertex operator states(DK states) for minimal models coupled to gravity. We obtain agreement with the matrix model results on analytically continuing in the numbers of cosmological constant operators and matter screening operators. We illustrate this for the cases of the (2k1,2)(2k-1,2) and (p+1,p)(p+1,p) models.Comment: 11 pages, LaTeX, IMSc--92/35. (revised) minor changes plus one reference adde

    BTZ Black Hole Entropy from Ponzano-Regge Gravity

    Get PDF
    The entropy of the BTZ black hole is computed in the Ponzano-Regge formulation of three-dimensional lattice gravity. It is seen that the correct semi-classical behaviour of entropy is reproduced by states that correspond to all possible triangulations of the Euclidean black hole.Comment: 11 pages LaTeX, 3 eps figures, some minor clarifications added, result unchange

    Irregular dependence on Stokes number and non-ergodic transport of heavy inertial particles in steady laminar flows

    Full text link
    Small heavy particles in a fluid flow respond to the flow on a time-scale proportional to their inertia, or Stokes number St. Their behaviour is thought to be gradually modified as St increases. We show, in the steady spatially-periodic laminar Taylor-Green flow, that particle dynamics, and their effective diffusivity, actually change in an irregular, non-monotonic and sometimes discontinuous manner, with increasing St. At Stokes of order one, we show chaotic particle motion, contrasting earlier conclusions for heavy particles in the same flow (Wang et al. 1992). Particles may display trapped orbits, or unbounded diffusive or ballistic dispersion, with the vortices behaving like scatterers in a soft Lorentz gas (Klages et al. 2019). The dynamics is non-ergodic. We discuss the possible consequences of our findings for particulate turbulent flows

    Semirigid Geometry

    Full text link
    We provide an intrinsic description of NN-super \RS s and TNTN-\SR\ surfaces. Semirigid surfaces occur naturally in the description of topological gravity as well as topological supergravity. We show that such surfaces are obtained by an integrable reduction of the structure group of a complex supermanifold. We also discuss the \s moduli spaces of TNTN-\SR\ surfaces and their relation to the moduli spaces of NN-\s\ \RS s.Comment: 29p

    Current Oscillations, Interacting Hall Discs and Boundary CFTs

    Get PDF
    In this paper, we discuss the behavior of conformal field theories interacting at a single point. The edge states of the quantum Hall effect (QHE) system give rise to a particular representation of a chiral Kac-Moody current algebra. We show that in the case of QHE systems interacting at one point we obtain a ``twisted'' representation of the current algebra. The condition for stationarity of currents is the same as the classical Kirchoff's law applied to the currents at the interaction point. We find that in the case of two discs touching at one point, since the currents are chiral, they are not stationary and one obtains current oscillations between the two discs. We determine the frequency of these oscillations in terms of an effective parameter characterizing the interaction. The chiral conformal field theories can be represented in terms of bosonic Lagrangians with a boundary interaction. We discuss how these one point interactions can be represented as boundary conditions on fields, and how the requirement of chirality leads to restrictions on the interactions described by these Lagrangians. By gauging these models we find that the theory is naturally coupled to a Chern-Simons gauge theory in 2+1 dimensions, and this coupling is completely determined by the requirement of anomaly cancellation.Comment: 32 pages, LateX. Uses amstex, amssymb. Typos corrected. To appear in Int. J. Mod. Phys.

    Universal behaviour of entrainment due to coherent structures in turbulent shear flow

    Full text link
    I suggest a solution to a persistent mystery in the physics of turbulent shear flows: cumulus clouds rise to towering heights, practically without entraining the ambient medium, while apparently similar turbulent jets in general lose their identity within a small distance through entrainment and mixing. From dynamical systems computations on a model chaotic vortical flow, I show that entrainment and mixing due to coherent structures depend sensitively on the relative speeds of different portions of the flow. A small change in these speeds, effected for example by heating, drastically alters the sizes of the KAM tori and the chaotic mixing region. The entrainment rate and, hence, the lifetime of a turbulent shear flow, shows a universal, non-monotone dependence on the heating.Comment: Preprint replaced in order to add the following comment: accepted for publication in Phys. Rev. Let

    Reaction of Hydrazine Hydrate with Oxalic Acid: Synthesis and Crystal Structure of Dihydrazinium Oxalate

    Get PDF
    The reaction of oxalic acid with hydrazine hydrate (in appropriate mole ratio) forms the dihydrazinium oxalate under specific experimental condition. The title compound is a molecular salt containing two discrete hydrazinium cations and an oxalate anion. The oxalate anion is perfectly planar and there is a crystallographic centre of symmetry in the middle of the C-C bond. The C-O bond distances are almost equal indicating the presence of resonance in the oxalate ion. The crystal packing is stabilized by intermolecular N-H…Oand  N-H…Nhydrogen bonds. The oxalate ions are linked together end to end through hydrogen bonds (via N2H5+ ions) and run parallel to the [101] direction. It is interesting to note that each oxalate group in the structure is surrounded by six hydrazinium ions through hydrogen bonding. Similarly, each hydrazinium ion is surrounded by three oxalate and one hydrazinium ion.KEY WORDS: Hydrazine, oxalic acid, dihydrazinium oxalate, crystal structure

    A papyrographic micro-method for a determination of the organic acid make-up of fermented beers

    Get PDF
    This article does not have an abstract
    corecore