18 research outputs found

    Disorder-induced magnetooscillations in bilayer graphene at high bias

    Full text link
    Energy spectrum of biased bilayer graphene near the bottom has a "Mexican-hat"-like shape. For the Fermi level within the Mexican hat we predict that, apart from conventional magnetooscillations which vanish with temperature, there are additional magnetooscillations which are weakly sensitive to temperature. These oscillations are also insensitive to a long-range disorder. Their period in magnetic field scales with bias, V, as V^2. The origin of these oscillations is the disorder-induced scattering between electron-like and hole-like Fermi-surfaces, specific for Mexican hat.Comment: 5 pages, 2 figure

    Thermally activated intersubband scattering and oscillating magnetoresistance in quantum wells

    Full text link
    Experimental studies of magnetoresistance in high-mobility wide quantum wells reveal oscillations which appear with an increase in temperature to 10 K and whose period is close to that of Shubnikov-de Haas oscillations. The observed phenomenon is identified as magnetointersubband oscillations caused by the scattering of electrons between two occupied subbands and the third subband which becomes occupied as a result of thermal activation. These small-period oscillations are less sensitive to thermal suppression than the largeperiod magnetointersubband oscillations caused by the scattering between the first and the second subbands. Theoretical study, based on consideration of electron scattering near the edge of the third subband, gives a reasonable explanation of our experimental findings.Comment: 9 pages, 5 figure

    Nonequilibrium phenomena in high Landau levels

    Full text link
    Developments in the physics of 2D electron systems during the last decade have revealed a new class of nonequilibrium phenomena in the presence of a moderately strong magnetic field. The hallmark of these phenomena is magnetoresistance oscillations generated by the external forces that drive the electron system out of equilibrium. The rich set of dramatic phenomena of this kind, discovered in high mobility semiconductor nanostructures, includes, in particular, microwave radiation-induced resistance oscillations and zero-resistance states, as well as Hall field-induced resistance oscillations and associated zero-differential resistance states. We review the experimental manifestations of these phenomena and the unified theoretical framework for describing them in terms of a quantum kinetic equation. The survey contains also a thorough discussion of the magnetotransport properties of 2D electrons in the linear response regime, as well as an outlook on future directions, including related nonequilibrium phenomena in other 2D electron systems.Comment: 60 pages, 41 figure

    Protection of particular cleavage sites of restriction endonucleases by DstA and AcD.

    No full text
    It is shown here that distamycin A and actinomycin D can protect the recognition sites of endo R.EcoRI, EcoRII, HindII, HindIII, HpaI and HpaII from the attack of these restriction endonucleases. At proper distamycin concentrations only two endo R.EcoRI sites of phage lambda DNA are available for the restriction enzyme--sRI1 and sRI4. This phenomenon results in the appearance of larger DNA fragments comprising several consecutive fragments of endo R.EcoRI complete cleavage. The distamycin fragments isolated from the agarose gels can be subsequently cleaved by endo R.EcoRI with the yield of the fragments of complete digestion. We have compared the effect of distamycin A and actinomycin D on a number of restriction endonucleases having different nucleotide sequences in the recognition sites and established that antibiotic action depends on the nucleotide sequences of the recognition sites and their closest environmen
    corecore