3,760 research outputs found
Design of a Base-Board for arrays of closely-packed Multi-Anode Photo-Multipliers
We describe the design of a Base-Board to house Multi-Anode Photo-Multipliers
for use in large-area arrays of light sensors. The goals, the design, the
results of tests on the prototypes and future developments are presented.Comment: 16 pages, 5 figures, submitted to Nucl. Instrum. and Meth.
Observing Ultra High Energy Cosmic Particles from Space: SEUSO, the Super Extreme Universe Space Observatory Mission
The experimental search for ultra high energy cosmic messengers, from eV to beyond eV, at the very end of the known energy
spectrum, constitutes an extraordinary opportunity to explore a largely unknown
aspect of our universe. Key scientific goals are the identification of the
sources of ultra high energy particles, the measurement of their spectra and
the study of galactic and local intergalactic magnetic fields. Ultra high
energy particles might, also, carry evidence of unknown physics or of exotic
particles relics of the early universe. To meet this challenge a significant
increase in the integrated exposure is required. This implies a new class of
experiments with larger acceptances and good understanding of the systematic
uncertainties. Space based observatories can reach the instantaneous aperture
and the integrated exposure necessary to systematically explore the ultra high
energy universe. In this paper, after briefly summarising the science case of
the mission, we describe the scientific goals and requirements of the SEUSO
concept. We then introduce the SEUSO observational approach and describe the
main instrument and mission features. We conclude discussing the expected
performance of the mission
Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam
The LHCb detector will be upgraded to make more efficient use of the
available luminosity at the LHC in Run III and extend its potential for
discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb
detector for particle identification. In this paper we describe the setup and
the results of tests in a charged particle beam, carried out to assess
prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT
photosensor to the readout and data acquisition system.Comment: 25 pages, 22 figure
Extreme Energy Cosmic Rays (EECR) Observation Capabilities of an "Airwatch from Space'' Mission
The longitudinal development and other characteristics of the EECR induced
atmospheric showers can be studied from space by detecting the fluorescence
light induced in the atmospheric nitrogen. According to the Airwatch concept a
single fast detector can be used for measuring both intensity and time
development of the streak of fluorescence light produced by the atmospheric
shower induced by an EECR. In the present communication the detection
capabilities for the EECR observation from space are discussed.Comment: 3 pages (LaTeX). To appear in the Proceedings of TAUP'9
Measurement of the CKM angle γ from a combination of B±→Dh± analyses
A combination of three LHCb measurements of the CKM angle γ is presented. The decays B±→D K± and
B±→Dπ± are used, where D denotes an admixture of D0 and D0 mesons, decaying into K+K−, π+π−, K±π∓, K±π∓π±π∓, K0Sπ+π−, or K0S K+K− final states. All measurements use a dataset corresponding to 1.0 fb−1 of integrated luminosity. Combining results from B±→D K± decays alone a best-fit value of
γ =72.0◦ is found, and confidence intervals are set
γ ∈ [56.4,86.7]◦ at 68% CL,
γ ∈ [42.6,99.6]◦ at 95% CL.
The best-fit value of γ found from a combination of results from B±→Dπ± decays alone, is γ =18.9◦,
and the confidence intervals
γ ∈ [7.4,99.2]◦ ∪ [167.9,176.4]◦ at 68% CL
are set, without constraint at 95% CL. The combination of results from B± → D K± and B± → Dπ±
decays gives a best-fit value of γ =72.6◦ and the confidence intervals
γ ∈ [55.4,82.3]◦ at 68% CL,
γ ∈ [40.2,92.7]◦ at 95% CL
are set. All values are expressed modulo 180◦, and are obtained taking into account the effect of D0–D0
mixing
Determination of the b quark mass at the M_Z scale with the DELPHI detector at LEP
An experimental study of the normalized three-jet rate of b quark events with
respect to light quarks events (light= \ell \equiv u,d,s) has been performed
using the CAMBRIDGE and DURHAM jet algorithms. The data used were collected by
the DELPHI experiment at LEP on the Z peak from 1994 to 2000. The results are
found to agree with theoretical predictions treating mass corrections at
next-to-leading order. Measurements of the b quark mass have also been
performed for both the b pole mass: M_b and the b running mass: m_b(M_Z). Data
are found to be better described when using the running mass. The measurement
yields: m_b(M_Z) = 2.85 +/- 0.18 (stat) +/- 0.13 (exp) +/- 0.19 (had) +/- 0.12
(theo) GeV/c^2 for the CAMBRIDGE algorithm. This result is the most precise
measurement of the b mass derived from a high energy process. When compared to
other b mass determinations by experiments at lower energy scales, this value
agrees with the prediction of Quantum Chromodynamics for the energy evolution
of the running mass. The mass measurement is equivalent to a test of the
flavour independence of the strong coupling constant with an accuracy of 7
permil.Comment: 24 pages, 10 figures, Accepted by Eur. Phys. J.
Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma)
The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma
and Bs0 -> phi gamma has been measured using 0.37 fb-1 of pp collisions at a
centre of mass energy of sqrt(s) = 7 TeV, collected by the LHCb experiment. The
value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.12 +/- 0.08
^{+0.06}_{-0.04} ^{+0.09}_{-0.08}, where the first uncertainty is statistical,
the second systematic and the third is associated to the ratio of fragmentation
fractions fs/fd. Using the world average for BR(B0 -> K*0 gamma) = (4.33 +/-
0.15) x 10^{-5}, the branching fraction BR(Bs0 -> phi gamma) is measured to be
(3.9 +/- 0.5) x 10^{-5}, which is the most precise measurement to date.Comment: 15 pages, 1 figure, 2 table
Measurement and Interpretation of Fermion-Pair Production at LEP energies above the Z Resonance
This paper presents DELPHI measurements and interpretations of
cross-sections, forward-backward asymmetries, and angular distributions, for
the e+e- -> ffbar process for centre-of-mass energies above the Z resonance,
from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are
consistent with the predictions of the Standard Model and are used to study a
variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering
and several models which include physics beyond the Standard Model: the
exchange of Z' bosons, contact interactions between fermions, the exchange of
gravitons in large extra dimensions and the exchange of sneutrino in R-parity
violating supersymmetry.Comment: 79 pages, 16 figures, Accepted by Eur. Phys. J.
Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−
The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions
A Determination of the Centre-of-Mass Energy at LEP2 using Radiative 2-fermion Events
Using e+e- -> mu+mu-(gamma) and e+e- -> qqbar(gamma) events radiative to the
Z pole, DELPHI has determined the centre-of-mass energy, sqrt{s}, using energy
and momentum constraint methods. The results are expressed as deviations from
the nominal LEP centre-of-mass energy, measured using other techniques. The
results are found to be compatible with the LEP Energy Working Group estimates
for a combination of the 1997 to 2000 data sets.Comment: 20 pages, 6 figures, Accepted by Eur. Phys. J.
- …