535 research outputs found

    Cellulose pretreatment and dissolution: Selection of solvent and processing conditions

    Get PDF
    Efficient utilization of biomass is hindered by the recalcitrance to dissolution of semicrystalline cellulose. Pretreatment is often used to alter the structure of cellulosic biomass in order to make cellulose more accessible to solvents and enzymes. The pretreatment involves physical and/or chemical processing which affects the degree of crystallinity and size of biomass particles. We examine here the effects of (i) solvent properties, pretreatment steps and temperature, and (ii) fiber diameter and degree of crystallinity, on the kinetics of cellulose swelling and dissolution. To this end we have combined (a) experimental results on cotton fiber swelling, change in crystallinity and dissolved amount when treated under different solvent conditions, with (b) a phenomenological model that accounts for the phenomena governing the dissolution of solid cellulose, e.g., solvent penetration, transformation from crystalline to amorphous domains, specimen swelling, and polymer chain untangling [1]. The insights obtained from this analysis would facilitate the rational selection of solvents and the design of pretreatment processes to reduce the size and degree of crystallinity of cellulosic biomass particles, leading to enhanced biomass utilization [2]. References: [1] Ghasemi, M.; Singapati, A. Y.; Tsianou, M.; Alexandridis, P., Dissolution of semicrystalline polymer fibers: Numerical modeling and parametric analysis. AIChE Journal 2017, 63 (4), 1368-1383. DOI: 10.1002/aic.15615. [2] Ghasemi, M.; Tsianou, M.; Alexandridis, P., Assessment of solvents for cellulose dissolution. Bioresource Technol. 2017, 228, 330-338. DOI: 10.1016/j.biortech.2016.12.049

    Cellulose pretreatment and dissolution: Selection of solvent and processing conditions

    Get PDF
    Efficient utilization of biomass is hindered by the recalcitrance to dissolution of semicrystalline cellulose. Pretreatment is often used to alter the structure of cellulosic biomass in order to make cellulose more accessible to solvents and enzymes. The pretreatment involves physical and/or chemical processing which affects the degree of crystallinity and size of biomass particles. We examine here the effects of (i) solvent properties, pretreatment steps and temperature, and (ii) fiber diameter and degree of crystallinity, on the kinetics of cellulose swelling and dissolution. To this end we have combined (a) experimental results on cotton fiber swelling, change in crystallinity and dissolved amount when treated under different solvent conditions, with (b) a phenomenological model that accounts for the phenomena governing the dissolution of solid cellulose, e.g., solvent penetration, transformation from crystalline to amorphous domains, specimen swelling, and polymer chain untangling [1]. The insights obtained from this analysis would facilitate the rational selection of solvents and the design of pretreatment processes to reduce the size and degree of crystallinity of cellulosic biomass particles, leading to enhanced biomass utilization [2]. References: [1] Ghasemi, M.; Singapati, A. Y.; Tsianou, M.; Alexandridis, P., Dissolution of semicrystalline polymer fibers: Numerical modeling and parametric analysis. AIChE Journal 2017, 63 (4), 1368-1383. DOI: 10.1002/aic.15615. [2] Ghasemi, M.; Tsianou, M.; Alexandridis, P., Assessment of solvents for cellulose dissolution. Bioresource Technol. 2017, 228, 330-338. DOI: 10.1016/j.biortech.2016.12.049

    Simulation and Track Reconstruction Techniques for the J-PARC muon g-2 experiment

    Full text link
    The Muon g-2/EDM proposed experiment at J-PARC is a promising and innovative attempt at the field of Precision Physics. The sensitivity goal of 0.1 ppm will test the limits of our current understanding, and may probe for Beyond the Standard Model observations. This paper seeks out to investigate the computational techniques required by the experiment. The GEANT4 [1] framework was used to simulate the detector setup, according to the experiment’s Conceptual Design Report (CDR) [2]. This allowed to observe the event hierarchy in different energies, generate signal hit data, and construct an event-selection algorithm. ROOT and GDML enabled us to use the geometry and parsed output data in a platform-independent way. Using techniques pertaining to Machine Learning and Image Feature extraction, such as the Canny Edge detection and the Hough Transform, we were able to construct a generic representation of ‘track families’ from each event category. Finally, the modular GENFIT2 [3] framework was used to implement the Kalman Filter [4] along with an Deterministic Annealing Filter (DAF) [5] and the Runge-Kutta stepper to reconstruct tracks from a few digitized, smeared singular event data

    Neutron radioactivity—Lifetime measurements of neutron-unbound states

    Get PDF
    A new technique to measure the lifetime τ of a neutron-radioactive nucleus that decays in-flight via neutron emission is presented and demonstrated utilizing MonteCarlo simulations. The method is based on the production of the neutron-unbound nucleus in a target, which at the same time slows down the produced nucleus and the residual nucleus after (multi-) neutron emission. The spectrum of the velocity difference of neutron(s) and the residual nucleus has a characteristic shape, that allows to extract the lifetime. If the decay happens outside the target there will be a peak in the spectrum, while events where the decay is in the target show a broad flat distribution due to the continuous slowing down of the residual nucleus. The method itself and the analysis procedure are discussed in detail for the specific candidate 26O. A stack of targets with decreasing target thicknesses can expand the measurable lifetime range and improve the sensitivity by increasing the ratio between decays outside and inside the target. The simulations indicate a lower limit of measurable lifetime τ∼0.2 ps for the given conditions

    Direct Reactions with Light Neutron-Rich Nuclei

    Get PDF

    Principles for integrating reactive species into in vivo biological processes:examples from exercise physiology

    Get PDF
    The equivocal role of reactive species and redox signaling in exercise responses and adaptations is an example clearly showing the inadequacy of current redox biology research to shed light on fundamental biological processes in vivo. Part of the answer probably relies on the extreme complexity of the in vivo redox biology and the limitations of the currently applied methodological and experimental tools. We propose six fundamental principles that should be considered in future studies to mechanistically link reactive species production to exercise responses or adaptations: 1) identify and quantify the reactive species, 2) determine the potential signaling properties of the reactive species, 3) detect the sources of reactive species, 4) locate the domain modified and verify the (ir)reversibility of post-translational modifications, 5) establish causality between redox and physiological measurements, 6) use selective and targeted antioxidants. Fulfilling these principles requires an idealized human experimental setting, which is certainly a utopia. Thus, researchers should choose to satisfy those principles, which, based on scientific evidence, are most critical for their specific research question

    Effects of Risedronate in Runx2 Overexpressing Mice, an Animal Model for Evaluation of Treatment Effects on Bone Quality and Fractures

    Get PDF
    Young mice overexpressing Runx2 specifically in cells of the osteoblastic lineage failed to gain bone mass and exhibited a dramatic increase in bone resorption, leading to severe osteopenia and spontaneous vertebral fractures. The objective of the current study was to determine whether treatment with a bisphosphonate (risedronate, Ris), which reduces fractures in postmenopausal as well as in juvenile osteoporosis, was able to improve bone quality and reduce vertebral fractures in mice overexpressing Runx2. Four-week-old female Runx2 mice received Ris at 2 and 10 μg/kg subcutaneously twice a week for 12 weeks. Runx2 and wild-type mice received vehicle (Veh) as control. We measured the number of new fractures by X-ray and bone mineral density (BMD) by DEXA. We evaluated bone quality by histomorphometry, micro-CT, and Fourier transform infrared imaging (FTIRI). Ris at 20 μg/kg weekly significantly reduced the average number of new vertebral fractures compared to controls. This was accompanied by significantly increased BMD, increased trabecular bone volume, and reduced bone remodeling (seen in indices of bone resorption and formation) in the vertebrae and femoral metaphysis compared to Runx2 Veh. At the femur, Ris also increased cortical thickness. Changes in collagen cross-linking seen on FTIRI confirmed that Runx2 mice have accelerated bone turnover and showed that Ris affects the collagen cross-link ratio at both forming and resorbing sites. In conclusion, young mice overexpressing Runx2 have high bone turnover-induced osteopenia and spontaneous fractures. Ris at 20 μg/kg weekly induced an increase in bone mass, changes in bone microarchitecture, and decreased vertebral fractures

    Direct mass measurements of 19B, 22C, 29F, 31Ne, 34Na and other light exotic nuclei

    Full text link
    We report on direct time-of-flight based mass measurements of 16 light neutron-rich nuclei. These include the first determination of the masses of the Borromean drip-line nuclei 19^{19}B, 22^{22}C and 29^{29}F as well as that of 34^{34}Na. In addition, the most precise determinations to date for 23^{23}N and 31^{31}Ne are reported. Coupled with recent interaction cross-section measurements, the present results support the occurrence of a two-neutron halo in 22^{22}C, with a dominant ν2s1/22\nu2s_{1/2}^2 configuration, and a single-neutron halo in 31^{31}Ne with the valence neutron occupying predominantly the 2p3/2p_{3/2} orbital. Despite a very low two-neutron separation energy the development of a halo in 19^{19}B is hindered by the 1d5/22d_{5/2}^2 character of the valence neutrons.Comment: 5 page

    Coulomb breakup of neutron-rich 29,30^{29,30}Na isotopes near the island of inversion

    Get PDF
    First results are reported on the ground state configurations of the neutron-rich 29,30^{29,30}Na isotopes, obtained via Coulomb dissociation (CD) measurements as a method of the direct probe. The invariant mass spectra of those nuclei have been obtained through measurement of the four-momentum of all decay products after Coulomb excitation on a 208Pb^{208}Pb target at energies of 400-430 MeV/nucleon using FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated Coulomb-dissociation cross-sections (CD) of 89 (7)(7) mb and 167 (13)(13) mb up to excitation energy of 10 MeV for one neutron removal from 29^{29}Na and 30^{30}Na respectively, have been extracted. The major part of one neutron removal, CD cross-sections of those nuclei populate core, in its' ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of 29^{29}Na(3/2+){(3/2^+)} and 30^{30}Na(2+){(2^+)} is the dd orbital with small contribution in the ss-orbital which are coupled with ground state of the core. The ground state configurations of these nuclei are as 28^{28}Na_{gs (1^+)\otimes\nu_{s,d} and 29^{29}Nags(3/2+)νs,d_{gs}(3/2^+)\otimes\nu_{ s,d}, respectively. The ground state spin and parity of these nuclei, obtained from this experiment are in agreement with earlier reported values. The spectroscopic factors for the valence neutron occupying the ss and dd orbitals for these nuclei in the ground state have been extracted and reported for the first time. A comparison of the experimental findings with the shell model calculation using MCSM suggests a lower limit of around 4.3 MeV of the sd-pf shell gap in 30^{30}Na.Comment: Modified version of the manuscript is accepted for publication in Journal of Physics G, Jan., 201

    Triplet energy differences and the low lying structure of Ga 62

    Get PDF
    Background: Triplet energy differences (TED) can be studied to yield information on isospin-non-conserving interactions in nuclei. Purpose: The systematic behavior of triplet energy differences (TED) of T=1, J\u3c0=2+ states is examined. The A=62 isobar is identified as having a TED value that deviates significantly from an otherwise very consistent trend. This deviation can be attributed to the tentative assignments of the pertinent states in Ga62 and Ge62. Methods: An in-beam \u3b3-ray spectroscopy experiment was performed to identify excited states in Ga62 using Gamma-Ray Energy Tracking In-Beam Nuclear Array with the S800 spectrometer at NSCL using a two-nucleon knockout approach. Cross-section calculations for the knockout process and shell-model calculations have been performed to interpret the population and decay properties observed. Results: Using the systematics as a guide, a candidate for the transition from the T=1, 2+ state is identified. However, previous work has identified similar states with different J\u3c0 assignments. Cross-section calculations indicate that the relevant T=1, 2+ state should be one of the states directly populated in this reaction. Conclusions: As spins and parities were not measurable, it is concluded that an unambiguous identification of the first T=1, 2+ state is required to reconcile our understanding of TED systematics
    corecore