798 research outputs found

    Micro-Drilling of ZTA and ATZ Ceramic Composit: Effect of Cutting Parameters on Surface Roughness

    Get PDF
    Ceramics are a class of materials widely used during last fifteen years for orthopaedic applications. It is well known that they are characterized by low wear rate, and friction coefficient. However, these materials are very difficult to machine into complex shapes because of their brittleness and high hardness. The most effective method to increase the crack resistance is the formation of a composite structure. This class of materials, composed by two or more different ceramics, can present higher characteristic respect to the single component, like fracture toughness and flexural strength. This paper presents a study of the influence of cutting parameters (cutting speed, feed rate and step number) onto the hole surface roughness and deformation due to the drill operation. The ceramic composite materials AZT (alumina toughened zirconia) and ZTA (zirconia toughened alumina) were first characterized in terms of hardness and roughness. After the drilling test, the holes were analyzed using scanning electron microscope (SEM) and an advanced 3-dimensional non-contact optical profilomete

    Texturizzazione laser della lega di magnesio AZ31 per migliorare l’adesione nelle applicazioni biomedicali

    Get PDF
    "Laser surface texturing of AZ31 Magnesium Alloy to improve adhesion in biomedical application Cardiovascular stent have assumed a primary role to solve heart problems related to constraints that lead to the malfunctioning of a hollow organ. The research is shifting more and more towards the creations of less invasive stent having biocompatibility and biodegradability as primary requirements. Metal that best meets both these requirements and also the structural ones is Magnesium and its alloys. The greatest limit to the use of this material comes from its low corrosion resistance that it is manifested at the body pH. The idea at the basis of this work is to cover the Magnesium stent with a biodegradable polymer to increase its resistance to corrosion. The following paper focuses the study on the texturing surface treatments, achievable by a laser beam, in order to optimize the adhesion between the substrate and the polymer. The Magnesium alloy used is AZ31. Studies of surface modification through the mechanisms of the remelting and microdrilling by laser have been performed on the AZ31 surface. The characterization of the selected surfaces in terms of roughness variations, changes in wettability, oxides formation and geometry of the obtained structures, led to the identification of a limited number of conditions that will be further investigated.

    A tunable, dual mode field-effect or single electron transistor

    Full text link
    A dual mode device behaving either as a field-effect transistor or a single electron transistor (SET) has been fabricated using silicon-on-insulator metal oxide semiconductor technology. Depending on the back gate polarisation, an electron island is accumulated under the front gate of the device (SET regime), or a field-effect transistor is obtained by pinching off a bottom channel with a negative front gate voltage. The gradual transition between these two cases is observed. This dual function uses both vertical and horizontal tunable potential gradients in non-overlapped silicon-on-insulator channel

    Critical Current Density in Superconducting Nb-Ti Strands in the 100 mT to 11 T Applied Field Range

    Get PDF
    The knowledge of the critical current density in a wide temperature and applied magnetic field range is a crucial issue for the design of a superconducting magnet, especially for determining both current and temperature margins. The critical current density of LHC-type Nb-Ti strands of 0.82 and 0.48 mm diameter was measured by means of critical current and magnetization measurements at both 4.2 K and 1.9 K and for a broad magnetic field range (up to 11 T). For the magnetic field range common to both measurement methods, critical current density values as extracted from transport current and from magnetization data are compared and found fairly consistent. Our experimental data are compared to other sets from literature and to scaling laws as well

    Critical Current Studies on Deformed Nb-Ti Strands

    Get PDF
    The Nb-Ti hard conductors used in LHC dipole and quadrupole magnets are Rutherford cables composed of several tens of strands. During the cabling process, the strands are severely compacted especially at the thin edge of the cable. In order to assess, on the whole wire length, the deformation effect on the transport current of the wires, LHC-type Nb-Ti superconducting strands of various types were flattened by means of rollers. The critical current was then measured as a function of deformation and applied magnetic field at both 4.3 K and 1.9 K. The measurements were performed for both orientations (flat face perpendicular or parallel to magnetic field). The critical current density anisotropy of such deformed strands and the correlation with magnetization effects are discussed. This study permits to better understand and to quantify the critical current degradation of few percent observed in strands due to cabling. Comparisons with wires extracted from Rutherford cables are presented

    Enhancing productivity and efficiency in conventional laser metal deposition process for Inconel 718 – Part II: advancing the process performance

    Get PDF
    This paper is the second part of a work focused on optimizing the performance of conventional Laser Metal Deposition (C-LMD) process for Inconel 718 (IN718). In Part I, through an extensive experimental campaign on single tracks, the interplay between process parameters and their impact on the deposition rate, powder catchment efficiency, and clad geometry is examined. The parameters investigated include laser power, scan speed, powder feed rate, and standoff distance. By systematically adjusting these parameters, the aim is to identify optimal conditions that maximize productivity while maintaining a favorable clad shape for multi-pass multi-layer depositions. Part II starts from the findings and results of Part I by continuing the optimization on thick wall structures. These are utilized to assess the effect of 3D geometrical process parameters, specifically hatch spacing and Z-step, on process performance and stability. Based on the findings, further optimization procedure is presented, pushing the boundaries of the C-LMD process for IN718. By fine-tuning the process parameters, the capability of the C-LMD process to deposit fully dense IN718 with a productivity of 1500 g/h and a powder catchment efficiency of 70% is demonstrated. These results highlight the potential of C-LMD as a viable manufacturing technique for efficiently fabricating large components. Overall, this study contributes to a deeper understanding of the relationship between process parameters and performance in C-LMD for IN718. The insights gained from this research can guide the development of efficient and cost-effective LMD strategies, facilitating the practical implementation of this process in various industries

    Channeling and Volume Reflection Based Crystal Collimation of Tevatron Circulating Beam Halo (T-980)

    Full text link
    The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various crystal types and parameters. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, as well as adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. The first investigation of colliding beam collimation simultaneously using crystals in both the vertical and horizontal plane has been made in the regime with horizontally channeled and vertically volume-reflected beams. Planning is underway for significant hardware improvements during the FY10 summer shutdown and for dedicated studies during the final year of Tevatron operation and also for a "post-collider beam physics running" period.Comment: 3 pp. 1st International Particle Accelerator Conference: IPAC'10, 23-28 May 2010: Kyoto, Japa

    Studies on combined momentum and betatron cleaning in the LHC

    Get PDF
    Collimation and halo cleaning for the LHC beams are performed separately for betatron and momentum losses, requiring two dedicated insertions for collimation. Betatron cleaning is performed in IR7 while momentum cleaning is performed in IR3. A study has been performed to evaluate the performance reach for a combined betatron and momentum cleaning system in IR3. The results are presented

    Micro-Drilling of ZTA and ATZ Ceramic Composit: Effect of Cutting Parameters on Surface Roughness

    Get PDF
    Ceramics are a class of materials widely used during last fifteen years for orthopaedic applications. It is well known that they are characterized by low wear rate, and friction coefficient. However, these materials are very difficult to machine into complex shapes because of their brittleness and high hardness. The most effective method to increase the crack resistance is the formation of a composite structure. This class of materials, composed by two or more different ceramics, can present higher characteristic respect to the single component, like fracture toughness and flexural strength. This paper presents a study of the influence of cutting parameters (cutting speed, feed rate and step number) onto the hole surface roughness and deformation due to the drill operation. The ceramic composite materials AZT (alumina toughened zirconia) and ZTA (zirconia toughened alumina) were first characterized in terms of hardness and roughness. After the drilling test, the holes were analyzed using scanning electron microscope (SEM) and an advanced 3-dimensional non-contact optical profilometer

    Comparison between Eight-Axis Articulated Robot and Five-Axis CNC Gantry Laser Metal Deposition Machines for Fabricating Large Components

    Get PDF
    Featured Application: Laser metal deposition of large axisymmetric components. Laser metal deposition (LMD) is an additive manufacturing (AM) process capable of producing large components for the aerospace and oil and gas industries. This is achieved by mounting the deposition head on a motion system, such as an articulated robot or a gantry computer numerical control (CNC) machine, which can scan large volumes. Articulated robots are more flexible and less expensive than CNC machines, which on the other hand, are more accurate. This study compares two LMD systems with different motion architectures (i.e., an eight-axis articulated robot and a five-axis CNC gantry machine) in producing a large gas turbine axisymmetric component. The same process parameters were applied to both machines. The deposited components show no significant differences in geometry, indicating that the different performances in terms of accuracy of the two machines do not influence the outcome. The findings indicate that LMD can consistently produce large-scale axisymmetric metal components with both types of equipment. For such an application, the user has the option of using an articulated robot when flexibility and cost are essential, such as in a research context, or a CNC machine where ease of programming and process standardization are important elements, such as in an industrial environment
    • 

    corecore