107 research outputs found

    Vacuum Cherenkov radiation

    Full text link
    Within the classical Maxwell-Chern-Simons limit of the Standard-Model Extension (SME), the emission of light by uniformly moving charges is studied confirming the possibility of a Cherenkov-type effect. In this context, the exact radiation rate for charged magnetic point dipoles is determined and found in agreement with a phase-space estimate under certain assumptions.Comment: 4 pages, REVTeX

    Fine structure of Vavilov-Cherenkov radiation near the Cherenkov threshold

    Full text link
    We analyze the Vavilov-Cherenkov radiation (VCR) in a dispersive nontransparent dielectric air-like medium both below and above the Cherenkov threshold, in the framework of classical electrodynamics. It is shown that the transition to the subthreshold energies leads to the destruction of electromagnetic shock waves and to the sharp reduction of the frequency domain where VCR is emitted. The fine wake-like structure of the Vavilov-Cherenkov radiation survives and manifests the existence of the subthreshold radiation in the domain of anomalous dispersion. These domains can approximately be defined by the two phenomenological parameters of the medium, namely, the effective frequency of oscillators and the damping describing an interaction with the other degrees of freedom.Comment: 9 pages, 6 figure

    On Tamm's problem in the Vavilov-Cherenkov radiation theory

    Get PDF
    We analyse the well-known Tamm problem treating the charge motion on a finite space interval with the velocity exceeding light velocity in medium. By comparing Tamm's formulae with the exact ones we prove that former do not properly describe Cherenkov radiation terms. We also investigate Tamm's formula cos(theta)=1/(beta n) defining the position of maximum of the field strengths Fourier components for the infinite uniform motion of a charge. Numerical analysis of the Fourier components of field strengths shows that they have a pronounced maximum at cos(theta)=1/(beta n) only for the charge motion on the infinitely small interval. As the latter grows, many maxima appear. For the charge motion on an infinite interval there is infinite number of maxima of the same amplitude. The quantum analysis of Tamm's formula leads to the same results.Comment: 28 pages, 8 figures, to be published in J.Phys.D:Appl.Phy

    Finite temperature Cherenkov radiation in the presence of a magnetodielectric medium

    Full text link
    A canonical approach to Cherenkov radiation in the presence of a magnetodielectric medium is presented in classical, nonrelativistic and relativistic quantum regimes. The equations of motion for the canonical variables are solved explicitly for both positive and negative times. Maxwell and related constitute equations are obtained. In the large-time limit, the vector potential operator is found and expressed in terms of the medium operators. The energy loss of a charged particle, emitted in the form of radiation, in finite temperature is calculated. A Dirac equation concerning the relativistic motion of the particle in presence of the magnetodielectric medium is derived and the relativistic Cherenkov radiation at zero and finite temperature is investigated. Finally, it is shown that the Cherenkov radiation in nonrelativistic and relativistic quantum regimes, unlike its classical counterpart, introduces automatically a cutoff for higher frequencies beyond which the power of radiation emission is zero.Comment: To be appear in PR

    Self-amplified Cherenkov radiation from a relativistic electron in a waveguide partially filled with a laminated material

    Full text link
    The radiation from a relativistic electron uniformly moving along the axis of cylindrical waveguide filled with laminated material of finite length is investigated. Expressions for the spectral distribution of radiation passing throw the transverse section of waveguide at large distances from the laminated material are derived with no limitations on the amplitude and variation profile of the layered medium permittivity and permeability. Numerical results for layered material consisting of dielectric plates alternated with vacuum gaps are given. It is shown that at a special choice of problem parameters, Cherenkov radiation generated by the relativistic electron inside the plates is self-amplified. The visual explanation of this effect is given and a possible application is discussed.Comment: 8 pages, 4 figures,1 table, the paper is accepted for publication in the Journal of Physics: Conference Serie

    Synchrotron radiation from a charge moving along a helical orbit inside a dielectric cylinder

    Full text link
    The radiation emitted by a charged particle moving along a helical orbit inside a dielectric cylinder immersed into a homogeneous medium is investigated. Expressions are derived for the electromagnetic potentials, electric and magnetic fields, and for the spectral-angular distribution of radiation in the exterior medium. It is shown that under the Cherenkov condition for dielectric permittivity of the cylinder and the velocity of the particle image on the cylinder surface, strong narrow peaks are present in the angular distribution for the number of radiated quanta. At these peaks the radiated energy exceeds the corresponding quantity for a homogeneous medium by some orders of magnitude. The results of numerical calculations for the angular distribution of radiated quanta are presented and they are compared with the corresponding quantities for radiation in a homogeneous medium. The special case of relativistic charged particle motion along the direction of the cylinder axis with non-relativistic transverse velocity (helical undulator) is considered in detail. Various regimes for the undulator parameter are discussed. It is shown that the presence of the cylinder can increase essentially the radiation intensity.Comment: 18 pages, 8 EPS figure

    Some features of electromagnetic field of charged particle revolving about dielectric ball

    Full text link
    A relativistic electron uniformly rotating along an equatorial orbit around a dielectric ball may generate Cherenkov radiation tens of times more intense as that in case of revolution of a particle in a continuous, infinite and transparent medium. The root-mean-square values of electric and magnetic field strengths of particle are practically not localized in the central part of the equatorial plane of ball and close to the poles of ball.Comment: 6 pages, 3 figures, contribution to Proceedings of International Symposium RREPS-2009, 07-11 September, 2009, Zvenigorod, Russi

    First πK\pi K atom lifetime and πK\pi K scattering length measurements

    Get PDF
    The results of a search for hydrogen-like atoms consisting of πK±\pi^{\mp}K^{\pm} mesons are presented. Evidence for πK\pi K atom production by 24 GeV/c protons from CERN PS interacting with a nickel target has been seen in terms of characteristic πK\pi K pairs from their breakup in the same target (178±49178 \pm 49) and from Coulomb final state interaction (653±42653 \pm 42). Using these results the analysis yields a first value for the πK\pi K atom lifetime of τ=(2.51.8+3.0)\tau=(2.5_{-1.8}^{+3.0}) fs and a first model-independent measurement of the S-wave isospin-odd πK\pi K scattering length a0=13a1/2a3/2=(0.110.04+0.09)Mπ1\left|a_0^-\right|=\frac{1}{3}\left|a_{1/2}-a_{3/2}\right|= \left(0.11_{-0.04}^{+0.09} \right)M_{\pi}^{-1} (aIa_I for isospin II).Comment: 14 pages, 8 figure
    corecore