89 research outputs found
Physical properties of Ce3-xTe4 below room temperature
The physical properties of polycrystalline Ce3-xTe4 were investigated by
measurements of the thermoelectric properties, Hall coefficient, heat capacity,
and magnetization. The fully-filled, metallic x=0 compound displays a soft
ferromagnetic transition near 4K, and analysis of the corresponding heat
capacity anomaly suggests a doublet ground state for Ce^{3+}. The transition is
suppressed to below 2K in the insulating x=0.33 composition, revealing that
magnetic order in Ce3-xTe4 is driven by an RKKY-type interaction. The
thermoelectric properties trend with composition as expected from simple
electron counting, and the transport properties in Ce3Te4 are observed to be
similar to those in La3Te4. Trends in the low temperature thermal conductivity
data reveal that the phonons are efficiently scattered by electrons, while all
compositions examined have a lattice thermal conductivity near 1.2W/m/K at
200K.Comment: Submitted to Phys. Rev.
Thermodynamics of Nonstoichiometric Nickel Tellurides. I. Heat Capacity and Thermodynamic Functions of the δ Phase from 5 to 350°K
Heat capacities of the nickel tellurides were measured at compositions NiTe1.1 and NiTe2.0 (near limits of homogeneity of the δ phase) and at one intermediate composition, NiTe1.5, from 5 to 350°K. Heat capacity values and entropy and enthalpy increments are tabulated. No evidence of orderâdisorder transitions, or thermal anomalies, or of contributions to the thermal properties from the anisotropy or phonon scattering by the holes in the structure on approaching the composition NiTe2 was observed. Although simple additivity of the heat capacities of the constituent elements failed to represent that of the solution compositions adequately, a KoppâNeumann treatment in terms of the limiting compositions of the δ phase gives good agreement with the experimental heat capacity and entropy of NiTe1.5 and hence is useful in interpolating to other intermediate compositions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70090/2/JCPSA6-28-3-497-1.pd
- âŚ