339 research outputs found

    On deformation and classification of V-systems

    Get PDF
    The V-systems are special finite sets of covectors which appeared in the theory of the generalized Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations. Several families of V-systems are known but their classification is an open problem. We derive the relations describing the infinitesimal deformations of V-systems and use them to study the classification problem for V-systems in dimension 3. We discuss also possible matroidal structures of V-systems in relation with projective geometry and give the catalogue of all known irreducible rank 3 V-systems.Comment: Slightly revised version, one of the figures correcte

    Discrete Lagrangian systems on the Virasoro group and Camassa-Holm family

    Full text link
    We show that the continuous limit of a wide natural class of the right-invariant discrete Lagrangian systems on the Virasoro group gives the family of integrable PDE's containing Camassa-Holm, Hunter-Saxton and Korteweg-de Vries equations. This family has been recently derived by Khesin and Misiolek as Euler equations on the Virasoro algebra for Hα,β1H^1_{\alpha,\beta}-metrics. Our result demonstrates a universal nature of these equations.Comment: 6 pages, no figures, AMS-LaTeX. Version 2: minor changes. Version 3: minor change

    In search for a perfect shape of polyhedra: Buffon transformation

    Get PDF
    For an arbitrary polygon consider a new one by joining the centres of consecutive edges. Iteration of this procedure leads to a shape which is affine equivalent to a regular polygon. This regularisation effect is usually ascribed to Count Buffon (1707-1788). We discuss a natural analogue of this procedure for 3-dimensional polyhedra, which leads to a new notion of affine BB-regular polyhedra. The main result is the proof of existence of star-shaped affine BB-regular polyhedra with prescribed combinatorial structure, under partial symmetry and simpliciality assumptions. The proof is based on deep results from spectral graph theory due to Colin de Verdiere and Lovasz.Comment: Slightly revised version with added example of pentakis dodecahedro

    Canonically conjugate variables for the periodic Camassa-Holm equation

    Full text link
    The Camassa-Holm shallow water equation is known to be Hamiltonian with respect to two compatible Poisson brackets. A set of conjugate variables is constructed for both brackets using spectral theory.Comment: 10 pages, no figures, LaTeX; v. 2,3: references updated, minor change

    On the classification of scalar evolutionary integrable equations in 2+12+1 dimensions

    Full text link
    We consider evolutionary equations of the form ut=F(u,w)u_t=F(u, w) where w=Dx−1Dyuw=D_x^{-1}D_yu is the nonlocality, and the right hand side FF is polynomial in the derivatives of uu and ww. The recent paper \cite{FMN} provides a complete list of integrable third order equations of this kind. Here we extend the classification to fifth order equations. Besides the known examples of Kadomtsev-Petviashvili (KP), Veselov-Novikov (VN) and Harry Dym (HD) equations, as well as fifth order analogues and modifications thereof, our list contains a number of equations which are apparently new. We conjecture that our examples exhaust the list of scalar polynomial integrable equations with the nonlocality ww. The classification procedure consists of two steps. First, we classify quasilinear systems which may (potentially) occur as dispersionless limits of integrable scalar evolutionary equations. After that we reconstruct dispersive terms based on the requirement of the inheritance of hydrodynamic reductions of the dispersionless limit by the full dispersive equation

    Multidimensional Baker-Akhiezer functions and Huygens' Principle

    Get PDF
    A notion of rational Baker-Akhiezer (BA) function related to a configuration of hyperplanes in C^n is introduced. It is proved that BA function exists only for very special configurations (locus configurations), which satisfy certain overdetermined algebraic system. The BA functions satisfy some algebraically integrable Schrodinger equations, so any locus configuration determines such an equation. Some results towards the classification of all locus configurations are presented. This theory is applied to the famous Hadamard's problem of description of all hyperbolic equations satisfying Huygens' Principle. We show that in a certain class all such equations are related to locus configurations and the corresponding fundamental solutions can be constructed explicitly from the BA functions.Comment: 35 pages, LATEX, 2 figures included in graphicx. Submitted to Comm.Math.Phys. (Dec. 1998

    Yang-Baxter maps and multi-field integrable lattice equations

    Full text link
    A variety of Yang-Baxter maps are obtained from integrable multi-field equations on quad-graphs. A systematic framework for investigating this connection relies on the symmetry groups of the equations. The method is applied to lattice equations introduced by Adler and Yamilov and which are related to the nonlinear superposition formulae for the B\"acklund transformations of the nonlinear Schr\"odinger system and specific ferromagnetic models.Comment: 16 pages, 4 figures, corrected versio
    • …
    corecore