91 research outputs found

    <i>N,N</i>-bis-(dimethylfluorosilylmethyl)amides of <i>N</i>-organosulfonylproline and sarcosine: synthesis, structure, stereodynamic behaviour and <i>in silico</i> studies

    Get PDF
    (O→Si)-Chelate difluorides R3R2NCH(R1)C(O)N(CH2SiMe2F)2 (9a–c, R1R2 = (CH2)3, R3 = Ms (a), Ts (b); R1 = H, R2 = Me, R3 = Ms (c)), containing one penta- and one tetracoordinate silicon atoms were synthesized by silylmethylation of amides R3R2NCH(R1)C(O)NH2, subsequent hydrolysis of unstable intermediates R3R2NCH(R1)C(O)N(CH2SiMe2Cl)2 (7a–c) into 4-acyl-2,6-disilamorpholines R3R2NCH(R1)C(O)N(CH2SiMe2O)2 (8a–c) and the reaction of the latter compounds with BF3·Et2O. The structures of disilamorpholines 8a,c and difluoride 9a were confirmed by an X-ray diffraction study. According to the IR and NMR data, the O→Si coordination in solutions of these compounds was weaker than that in the solid state due to effective solvation of the Si–F bond. A permutational isomerisation involving an exchange of equatorial Me groups at the pentacoordinate Si atom in complexes 9a–c was detected, and its activational parameters were determined by 1H DNMR. In silico estimation of possible pharmacological effects and acute rat toxicity by PASS Online and GUSAR Online services showed a potential for their further pharmacological study

    Changes induced in mouse lipid metabolism by simultaneous impact of antisense oligonucleotide derivatives to <i>apoB</i>, <i>PCSK9</i>, and <i>apoCIII</i> mRNAs

    Get PDF
    Development of new drugs able to decrease the level of “bad” cholesterol, in particular, based on antisense oligonucleotide derivatives (ASOs), remains relevant for the patients with familial hypercholesterolemia and/or intolerant to statins. The goal of the work was to assess the changes in the lipid metabolism caused by variants of joint impact of the ASOs targeted to the mRNAs of its key genes: apoB, PCSK9, and apoCIII. Female C57BL/6J mice; nuclease-protected 13- and 20-nucleotide ASOs, and standard protocols for quantification of lipoproteins (HDL CHL, non-HDL CHL, and total CHL) and ALT in the blood serum were used in the work. The following combinations of ASOs were four times injected to the mouse caudal vein: 1) ASO to apoB, 2) ASO to apoCIII, 3) ASO to apoB and ASO to PCSK9, 4) ASO to apoB, ASO to PCSK9, and ASO to apoCIII, 5) ASO to apoB (three doses), ASO to PCSK9, and ASO to apoCIII (two doses), 6) ASO to PCSK9 and (ASO to apoCIII – only in the fourth administration). Triple weekly administration of these ASO combinations resulted in a decrease in non-HDL CHL by 25, 16, 35, 47, 60, and 7 %, respectively, as compared with the control and 1.8-, 1.5-, 1.9-, 2.4-, 3.1, and 1.24-fold higher HDL CHL/ non-HDL CHL ratio. The subsequent ASO injection with concurrent switching to a high-fat diet after 1 week resulted in a decrease in the non-HDL CHL by 28, 2, 28, 70, 33, and 49 % for ASOs (1–6), respectively, as compared with the control; the HDL CHL/non-HDL CHL ratio was 1.5-, 1.1-, 2-, 3.7-, 1.9-, and 2-fold better. The ALT concentration for all ASO combinations remained within the norm for the control animals, demonstrating the absence of any hepatotoxic effect. The best efficiency of ASOs requires selection of concentrations for single ASOs and their combinations as well as of the order and timing of administration. Thus, a new antisense approach is proposed

    Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective properties

    Get PDF
    The paper describes some biological features of the radioprotective effect of double-stranded RNA preparation. It was found that yeast RNA preparation has a prolonged radioprotective effect after irradiation by a lethal dose of 9.4 Gy. 100 % of animals survive on the 70th day of observation when irradiated 1 hour or 4 days after 7 mg RNA preparation injection, 60 % animals survive when irradiated on day 8 or 12. Time parameters of repair of double-stranded breaks induced by gamma rays were estimated. It was found that the injection of the RNA preparation at the time of maximum number of double-stranded breaks, 1 hour after irradiation, reduces the efficacy of radioprotective action compared with the injection 1 hour before irradiation and 4 hours after irradiation. A comparison of the radioprotective effect of the standard radioprotector B-190 and the RNA preparation was made in one experiment. It has been established that the total RNA preparation is more efficacious than B-190. Survival on the 40th day after irradiation was 78 % for the group of mice treated with the RNA preparation and 67 % for those treated with B-190. In the course of analytical studies of the total yeast RNA preparation, it was found that the preparation is a mixture of single-stranded and double-stranded RNA. It was shown that only double-stranded RNA has radioprotective properties. Injection of 160 μg double-stranded RNA protects 100 % of the experimental animals from an absolutely lethal dose of gamma radiation, 9.4 Gy. It was established that the radioprotective effect of double-stranded RNA does not depend on sequence, but depends on its double-stranded form and the presence of “open” ends of the molecule. It is supposed that the radioprotective effect of double-stranded RNA is associated with the participation of RNA molecules in the correct repair of radiation-damaged chromatin in blood stem cells. The hematopoietic pluripotent cells that have survived migrate to the periphery, reach the spleen and actively proliferate. The newly formed cell population restores the hematopoietic and immune systems, which determines the survival of lethally irradiated animals

    Eradication of Krebs-2 primary ascites via a single-injection regimen of cyclophosphamide and double-stranded DNA

    Get PDF
    Previously, we reported on the development of a therapeutic regimen allowing eradication of primary murine Krebs-2 ascites transplants. This protocol involved multiple injections of dsDNA preparations administered during the NER and HR phases of repair of interstrand DNA cross-links induced by prior cyclophosphamide treatments. Mice treated under this protocol frequently developed secondary ascites, which indicated that some tumor-inducing cancer stem cells could survive the treatment and caused relapse. Further, we observed that animals receiving multiple dsDNA injections developed pronounced systemic inflammatory response. This prompted us to develop a more straightforward treatment regimen based on the synergistic activity of cyclophosphamide and dsDNA preparations, which would allow complete eradication of established primary Krebs-2 ascites and also be less toxic for the treated animals. This protocol relies on a precisely timed single injection of dsDNA during the NER/HR transition period of each repair cycle. Under this protocol, 8-day remission of Krebs-2 engrafted mice was achieved, which was similar to the results of the multiple-injection treatment schedule. We observed an increase in the average life span of Krebs-2- transplanted mice on a single-injection regimen, which was consistent with reduced toxicity of such treatment

    Analysis of different therapeutic schemes combining cyclophosphamide and doublestranded DNA preparation for eradication of Krebs-2 primary ascites in mice

    Get PDF
    In the present paper, we report on the series of experiments where multiple regimens of CP and dsDNA injections were tested for targeting the ascites form of murine Krebs-2 cancer in situ. We show that combining CP with cross-linked human and salmon dsDNA results in a synergistic toxicity for ascites-bearing mice, an observation supported by the histopathology analysis of organs and tissues of experimental animals. In contrast, using a composite mixture of native and cross-linked human and salmon DNA after CP injections leads to a significant increase in average lifespan of the treated mice. Further, we demonstrate that repeated rounds of CP+dsDNA injections result in dramatic anticancer effect. The timing of injections is chosen so that they target the cells that were insensitive to the previous treatments as they were in the G2/M phase. 3-4 rounds of injections are needed to eliminate the subpopulation of tumor-initiating cancer stem cells. Our experiments identified the regimen when complete resorption of the primary Krebs-2 ascites occurs in all of the treated animals, followed by a remarkable remission period lasting 7-9 days. Yet, this regimen does not prevent secondary site metastases (either solid or ascites form) from developing, which is likely caused by the migration of ascites cells into adjacent tissues or by incomplete eradication of cancer stem cells. To address these and other questions, we expanded the study and performed histopathology analysis, which indicated that secondary metastases is not the only cause of death. In fact, many animals displayed unfolding systemic inflammatory reaction which was culminated by multiple organ failure. Thus, we developed the concept for treating ascites form of Krebs-2 cancer, which allows elimination of the primary ascites

    Development of the therapeutic regimen based on the synergistic activity of cyclophosphamide and double-stranded DNA preparation which results in complete cure of mice engrafted with Krebs-2 ascites

    Get PDF
    Cumulative evidence obtained in this series of studies has guided the logic behind the development of a novel composite dsDNA-based preparation whose therapeutic application according to the specific regimen completely cures the mice engrafted with otherwise lethal Krebs-2 ascites. The likely mechanism involves elimination of TAMRA+ tumor-inducing stem cells (TISCs) from Krebs-2 tumors. We performed quantitative analysis of TISC dynamics in Krebs-2  ascites following treatment with the cytostatic drug cyclophosphamide (CP) and untreated control cells. In intact ascites, TISC percentage oscillates around a certain value. Following CP treatment and massive apoptosis of committed cancer cell subpopulation, we observed relative increase in TISC percentage, which is consistent with reduced susceptibility of TISCs to CP. Nonetheless, this treatment apparently synchronizes TISCs in a cell cycle phase when they become sensitive to further drug treatments. We describe the regimen of synergistic DNA + CP activity against Krebs-2 ascites. This protocol results in a complete cure of 50 % of Krebs-2 engrafted mice and involves three metronomic injections of CP exactly at the timepoints when repair cycles are about to finish combined with dsDNA injections 18 hours following each CP injection. The “final shot” uses CP + DNA treatment, which targets the surviving yet highly synchronized and therefore treatmentsensitive cells. The first three CP/DNA injections appear to arrest Krebs-2 cells in late S-G2-M phase and result in their simultaneous progression into G1-S phase. The timing of the “final shot” is crucial for the successful treatment, which eradicates tumorigenic cell subpopulation from Krebs-2 ascites. Additionally, we quantified the changes in several biochemical, cellular and morphopathological parameters in mice throughout different treatment stages
    corecore