13 research outputs found
Π ΠΎΡΡΡΠΏΠ΅ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΠ΅ Π°Π»ΠΌΠ°Π·ΠΎΠ½ΠΎΡΠ½ΡΠ΅ ΠΏΠΎΡΠΎΠ΄Ρ ΠΈ Π°Π»ΠΌΠ°Π·Ρ ΠΠΎΡΡΠΎΡΠ½ΠΎΠΉ ΠΡΠ°Π·ΠΈΠ»ΠΈΠΈ
Π‘ΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
, Π³Π΅ΠΎΡ
ΡΠΎΠ½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
, ΠΏΠ΅ΡΡΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΎΠ³ΠΎ-Π³Π΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π°Π½Π½ΡΡ
ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ± ΡΡΠ°ΡΡΠΈΠΈ Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Π±ΡΠ°Π·ΠΈΠ»ΡΡΠΊΠΈΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ½ΠΎΡΠ½ΡΡ
ΠΊΠΎΠ½Π³Π»ΠΎΠΌΠ΅ΡΠ°ΡΠΎΠ² ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ, ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΌΠ°Π½ΡΠΈΠΉΠ½ΠΎΠ³ΠΎ ΠΏΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ, Π²Π΅ΡΠ΅ΡΡΠ²Π°. ΠΠ΅ ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΎ, ΡΡΠΎ Π°Π»ΠΌΠ°Π·ΠΎΠ½ΠΎΡΠ½ΡΠ΅ ΠΏΠΎΡΠΎΠ΄Ρ ΠΈΠ· ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Π‘ΠΎΠΏΠ°-ΠΡΡΠΌΠ°Π΄ΠΈΠ½ΡΠΎ Π² ΠΠΎΡΡΠΎΡΠ½ΠΎΠΉ ΠΡΠ°Π·ΠΈΠ»ΠΈΠΈ ΡΠ²Π»ΡΡΡΡΡ Π½Π΅ Π²ΡΠΎΡΠΈΡΠ½ΡΠΌΠΈ (ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ), ΠΊΠ°ΠΊ ΡΡΠΎ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎ ΡΡΠΈΡΠ°Π΅ΡΡΡ, Π° ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΠΌΠΈ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ°ΠΌΠΈ Π°Π»ΠΌΠ°Π·ΠΎΠ² Π² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΡΠΎΡΡΡΠΏΡΡ
, ΠΏΠΎΠΈΡΠΊΠΈ ΠΊΠΎΡΠΎΡΡΡ
Π²Π΅Π΄ΡΡΡΡ Π·Π΄Π΅ΡΡ ΡΠΆΠ΅ ΠΎΠΊΠΎΠ»ΠΎ 200 Π»Π΅Ρ. ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π±ΡΠ°Π·ΠΈΠ»ΡΡΠΊΠΈΡ
, ΡΡΠ°Π»ΡΡΠΊΠΈΡ
ΠΈ ΡΠΊΡΡΡΠΊΠΈΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ² ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΏΡΠΈΡΠΎΠ΄Π΅ Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ Π±ΡΠ°Π·ΠΈΠ»ΡΡΠΊΠΎ-ΡΡΠ°Π»ΡΡΠΊΠΎΠ³ΠΎ ΡΠΈΠΏΠ° ΠΎΠΊΡΡΠ³Π»ΡΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ², Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ
Π΄Π»Ρ ΠΎΡΠΎΠ±ΠΎΠ³ΠΎ ΡΠ»ΡΠΈΠ΄ΠΈΠ·Π°ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ° ΠΊΠΎΡΠ΅Π½Π½ΡΡ
Π°Π»ΠΌΠ°Π·Π½ΡΡ
ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ. ΠΠΎ Π΄Π°Π½Π½ΡΠΌ ΡΠΎΡΠΎΠ³ΠΎΠ½ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π΅ΡΡΡ, ΡΡΠΎ ΠΊΡΠΈΠ²ΠΎΠ³ΡΠ°Π½Π½Π°Ρ ΡΠΎΡΠΌΠ° Π°Π»ΠΌΠ°Π·ΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π½ΡΠΈΠΉΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½ΠΈΡ, ΡΠΎΡΠ΅ΡΠ°ΡΡΠ΅Π³ΠΎΡΡ Ρ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΡΡΠΈΡΠ°Π½ΠΈΠ΅ΠΌ ΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ, ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΡΡΠΈΠΌΠΈ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π² ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
. ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΎ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°Π·Π»ΠΈΡΠΈΡΡ
ΠΎΠΊΡΡΠ³Π»ΡΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ² Π² ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΡΡ
ΠΈ Π½Π΅ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΡΡ
ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΡΡ
. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π±ΡΠ°Π·ΠΈΠ»ΡΡΠΊΠΈΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ²Β β ΠΎΡΠ΅Π½Ρ ΡΠΈΡΠΎΠΊΠΈΠ΅ Π²Π°ΡΠΈΠ°ΡΠΈΠΈ ΠΏΠΎ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌ ΠΠ-ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ, ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°Π½ΠΈΠ΅ ΡΡΠ΅Π΄ΠΈ Π°Π»ΠΌΠ°Π·ΠΎΠ² ΠΏΠΎΠ΄ΡΠΈΠΏΠ° IΠ°Π1, Π²ΡΡΠΎΠΊΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π°Π³ΡΠ΅Π³Π°ΡΠΈΠΈ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΏΡΠΈΠΌΠ΅ΡΠΈ Π°Π·ΠΎΡΠ° ΠΈ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΏΠ»Π΅ΠΉΡΠ΅Π»Π΅ΡΡ, ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΡΠΌΠΈ ΡΠ΅Π½ΡΡΠ°ΠΌΠΈ ΠΈ ΡΠ΅Π½ΡΡΠ°ΠΌΠΈ ΡΠΈΡΡΠ΅ΠΌ Π3 ΠΈ Π4, ΡΠ°ΡΡΠΎ ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠΌΠΈ Π½Π°Π΄ ΡΠ΅Π½ΡΡΠ°ΠΌΠΈ N3, ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΡ (1150β1200Β°Π‘) ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΈ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΌΠ°Π½ΡΠΈΠΉΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΎΡΠΆΠΈΠ³Π°. ΠΠ°ΡΠΈΠ°ΡΠΈΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΈ Π±ΡΠ°Π·ΠΈΠ»ΡΡΠΊΠΈΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ² Π² Π½Π΅ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠΉ ΡΠ΅ΡΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅
Placer-Forming Diamantiferous Rocks and Diamonds of Eastern Brazil
Π‘ΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
, Π³Π΅ΠΎΡ
ΡΠΎΠ½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
, ΠΏΠ΅ΡΡΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΎΠ³ΠΎ-Π³Π΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π°Π½Π½ΡΡ
ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ± ΡΡΠ°ΡΡΠΈΠΈ Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Π±ΡΠ°Π·ΠΈΠ»ΡΡΠΊΠΈΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ½ΠΎΡΠ½ΡΡ
ΠΊΠΎΠ½Π³Π»ΠΎΠΌΠ΅ΡΠ°ΡΠΎΠ² ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ, ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΌΠ°Π½ΡΠΈΠΉΠ½ΠΎΠ³ΠΎ ΠΏΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ, Π²Π΅ΡΠ΅ΡΡΠ²Π°. ΠΠ΅ ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΎ, ΡΡΠΎ Π°Π»ΠΌΠ°Π·ΠΎΠ½ΠΎΡΠ½ΡΠ΅ ΠΏΠΎΡΠΎΠ΄Ρ ΠΈΠ· ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Π‘ΠΎΠΏΠ°-ΠΡΡΠΌΠ°Π΄ΠΈΠ½ΡΠΎ Π² ΠΠΎΡΡΠΎΡΠ½ΠΎΠΉ ΠΡΠ°Π·ΠΈΠ»ΠΈΠΈ ΡΠ²Π»ΡΡΡΡΡ Π½Π΅ Π²ΡΠΎΡΠΈΡΠ½ΡΠΌΠΈ (ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ), ΠΊΠ°ΠΊ ΡΡΠΎ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎ ΡΡΠΈΡΠ°Π΅ΡΡΡ, Π° ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΠΌΠΈ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ°ΠΌΠΈ Π°Π»ΠΌΠ°Π·ΠΎΠ² Π² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΡΠΎΡΡΡΠΏΡΡ
, ΠΏΠΎΠΈΡΠΊΠΈ ΠΊΠΎΡΠΎΡΡΡ
Π²Π΅Π΄ΡΡΡΡ Π·Π΄Π΅ΡΡ ΡΠΆΠ΅ ΠΎΠΊΠΎΠ»ΠΎ 200 Π»Π΅Ρ. ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π±ΡΠ°Π·ΠΈΠ»ΡΡΠΊΠΈΡ
, ΡΡΠ°Π»ΡΡΠΊΠΈΡ
ΠΈ ΡΠΊΡΡΡΠΊΠΈΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ² ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΏΡΠΈΡΠΎΠ΄Π΅ Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ Π±ΡΠ°Π·ΠΈΠ»ΡΡΠΊΠΎ-ΡΡΠ°Π»ΡΡΠΊΠΎΠ³ΠΎ ΡΠΈΠΏΠ° ΠΎΠΊΡΡΠ³Π»ΡΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ², Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ
Π΄Π»Ρ ΠΎΡΠΎΠ±ΠΎΠ³ΠΎ ΡΠ»ΡΠΈΠ΄ΠΈΠ·Π°ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ° ΠΊΠΎΡΠ΅Π½Π½ΡΡ
Π°Π»ΠΌΠ°Π·Π½ΡΡ
ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ. ΠΠΎ Π΄Π°Π½Π½ΡΠΌ ΡΠΎΡΠΎΠ³ΠΎΠ½ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π΅ΡΡΡ, ΡΡΠΎ ΠΊΡΠΈΠ²ΠΎΠ³ΡΠ°Π½Π½Π°Ρ ΡΠΎΡΠΌΠ° Π°Π»ΠΌΠ°Π·ΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π½ΡΠΈΠΉΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½ΠΈΡ, ΡΠΎΡΠ΅ΡΠ°ΡΡΠ΅Π³ΠΎΡΡ Ρ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΡΡΠΈΡΠ°Π½ΠΈΠ΅ΠΌ ΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ, ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΡΡΠΈΠΌΠΈ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π² ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
. ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΎ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°Π·Π»ΠΈΡΠΈΡΡ
ΠΎΠΊΡΡΠ³Π»ΡΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ² Π² ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΡΡ
ΠΈ Π½Π΅ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΡΡ
ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΡΡ
. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π±ΡΠ°Π·ΠΈΠ»ΡΡΠΊΠΈΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ²Β β ΠΎΡΠ΅Π½Ρ ΡΠΈΡΠΎΠΊΠΈΠ΅ Π²Π°ΡΠΈΠ°ΡΠΈΠΈ ΠΏΠΎ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌ ΠΠ-ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ, ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°Π½ΠΈΠ΅ ΡΡΠ΅Π΄ΠΈ Π°Π»ΠΌΠ°Π·ΠΎΠ² ΠΏΠΎΠ΄ΡΠΈΠΏΠ° IΠ°Π1, Π²ΡΡΠΎΠΊΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π°Π³ΡΠ΅Π³Π°ΡΠΈΠΈ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΏΡΠΈΠΌΠ΅ΡΠΈ Π°Π·ΠΎΡΠ° ΠΈ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΏΠ»Π΅ΠΉΡΠ΅Π»Π΅ΡΡ, ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΡΠΌΠΈ ΡΠ΅Π½ΡΡΠ°ΠΌΠΈ ΠΈ ΡΠ΅Π½ΡΡΠ°ΠΌΠΈ ΡΠΈΡΡΠ΅ΠΌ Π3 ΠΈ Π4, ΡΠ°ΡΡΠΎ ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠΌΠΈ Π½Π°Π΄ ΡΠ΅Π½ΡΡΠ°ΠΌΠΈ N3, ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΡ (1150β1200Β°Π‘) ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΈ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΌΠ°Π½ΡΠΈΠΉΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΎΡΠΆΠΈΠ³Π°. ΠΠ°ΡΠΈΠ°ΡΠΈΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΈ Π±ΡΠ°Π·ΠΈΠ»ΡΡΠΊΠΈΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ² Π² Π½Π΅ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠΉ ΡΠ΅ΡΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅.The aggregate geological, geochronological, petrographic, and mineralogo-geochemical data suggest the participation of endogenic, presumable mantle matter, in formation of Brazilian diamantiferous metaconglomerates. It is possible that the studied rocks from Sopa-Brumadinho Formation are not secondary, but primary source of diamonds in Eastern Brazil, which has been searched for about 200 years. The study of the Brazilian, Uralian, and Yakutian diamonds confirms existence of the uniform Brazilian-Uralian type of rounded diamonds, characteristic for special fluidization type of primary diamond deposits. Photogoniometric analysis showed that curvelinear faces of the Brazilian diamonds formed in result of long-term dissolution mantle process combined with mechanical abrasion, and chemical etching, encountered mainly in endogenic conditions. New quantitative data about difference in morphology between diamonds from kimberlitic and non-kimberlitic deposits were obtained. The twinning seams of diamond of the Uralian-Brazilian type represents a fragment of lonsdaleite structure. Spectroscopic study showed the specific features of Brazilian-Uralian diamonds, such as significant variation in IR-absorption, predominance of IΠ°Π1 type, high nitrogen aggregation degree, high concentration of platelets, enrichment by hydrogen and H3 and H4 centers often dominated over N3 centers, increased (1150β1200Β°Π‘) primary temperature of crystallization, and considerable duration of post-crystallization annealing. The physical substantiation of polysynthetic twinning of diamond in high parametric quasi-equilibrium conditions is presented. The spectroscopic sturdy testifies to important features of Brazilian-uralian diamonds β very wide variations on IR-absorption, admixture and high nitrogen concentration as structural defects-platelets, enrichment by hydrogen and H3 and H4 centers, often dominating over N3 centers, increased (1150β1200Β°Π‘) primary temperature of crystallization, considerable duration of post-crystallization annealing. All these features are also characteristic for rounded Uralian diamonds, but not typical for diamonds from kimberlites. Variation of spectroscopic features of Brazilian diamonds suggests their formation in unstable thermodynamic environment
Fe,Mg-Codoped Bismuth Tantalate Pyrochlores: Crystal Structure, Thermal Stability, Optical and Electrical Properties, XPS, NEXAFS, ESR, and <sup>57</sup>Fe MΓΆssbauer Spectroscopy Study
The effect of Fe and Mg-codoping on the crystal structure, optical and dielectric properties of bismuth tantalate-based pyrochlores has been studied. Samples of Bi2MgxFe1βxTa2O9.5βΞ (x β€ 0.7) are characterized by a porous dendrite-like microstructure. Fe,Mg-codoped bismuth tantalate pyrochlores are thermally stable up to a temperature of 1140 Β°C (x = 1). The Bi2Mg0.5Fe0.5Ta2O9.5βΞ thermal expansion coefficient increases uniformly and weakly from 3.6 to 9.3 Γ 10β6 Β°Cβ1 (30β1050 Β°C). The unit cell parameter of solid solutions increases uniformly from 10.5009(1) Γ
(x = 0.3) up to 10.5225(7) Γ
(x = 0.7). The structural parameters of disordered pyrochlore are determined by the Rietveld method (sp. gr. Fd3Β―m:2 (227), Z = 8). According to near edge X-ray absorption fine structure and X-ray photoelectron spectroscopy data, ions in solid solutions are in the charge states Bi (+3), Mg (+2), Fe (+3), Ta (+5-Ξ΄). The MΓΆssbauer spectrum is represented by a symmetric doublet with parameters IS = 0.365 Β± 0.0020 mm/s, QS = 0.604 Β± 0.034 mm/s, related to Fe3+ ions in regular axial octahedral positions. The samples exhibit the properties of dielectrics. The permittivity and the tangent of dielectric losses at 20 Β°C increases with the growth of iron content in the samples in the range of 28.5β30.5 and 0.001 (1 MHz). The width of the band gap of the obtained materials for direct allowed electronic transitions is in the range of 2.16(5)β2.41(5) eV. The studied samples satisfy the condition of efficient conversion of solar energy into an electrical one and are promising as catalysts and light-absorbing elements for solar panels
ΠΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°, ΠΠΠ ΠΈ NEXAFS β ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡ ΠΊΠ΅ΡΠ°ΠΌΠΈΠΊΠΈ BiβNbOβ, Π΄ΠΎΠΏΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π°ΡΠΎΠΌΠ°ΠΌΠΈ ΠΆΠ΅Π»Π΅Π·Π°
The measurements of magnetic susceptibility, EPR and NEXAFS- spectroscopy study of the ironcontaining
solid solutions of bismuth niobate Bi3NbO7 has indicated that iron atoms are represented
by monomeric Fe(III) and Fe(III)-O-Fe(III) exchange bound dimers with the ferromagnetic and
antiferromagnetic types of exchange in the solid solutions of cubic modification. The exchange
parameter and monomeric and dimeric cluster distribution in Bi3Nb1-xFexO7-Ξ΄ depending on the
content of the paramagnetic atoms were calculated according to the model of Heisenberg-Diracvan
Vleck. The solid solutions as well as iron oxides FeO, Fe2O3 and Fe3O4 were studied by the
NEXAFS spectroscopy in order to determine the degrees of oxidation of iron atoms. The analysis
of the NEXAFS Fe2p-spectra of iron-containing solid solutions and iron oxides revealed that the
studied Fe atoms were mainly in the +3 oxidation state. The EPR spectrum of the sample with
minimum iron content contained a symmetric signal with g = 4.27 with a weak shoulder at g ~ 8.
The samples of Bi3Nb1-xFexO7-Ξ΄ solid solutions at 0.02 β€ Ρ
β€ 0.04 had a low-intensity broad band in
the region of g ~ 2.28 of their spectra. The spectra of EPR of the solutions with x > 0.04 exhibited a
broad, slightly asymmetric line centered around g ~ 2.0ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π΄Π°Π½Π½ΡΡ
ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠΉ Π²ΠΎΡΠΏΡΠΈΠΈΠΌΡΠΈΠ²ΠΎΡΡΠΈ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΠΠΠ - ΠΈ NEXAFS-
ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΆΠ΅Π»Π΅Π·ΠΎΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΠ²Π΅ΡΠ΄ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² Π½ΠΈΠΎΠ±Π°ΡΠ° Π²ΠΈΡΠΌΡΡΠ° Bi3NbO7 ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΎΠΉ
ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π°ΡΠΎΠΌΡ ΠΆΠ΅Π»Π΅Π·Π° Π½Π°Ρ
ΠΎΠ΄ΡΡΡΡ Π² Π²ΠΈΠ΄Π΅ ΠΌΠΎΠ½ΠΎΠΌΠ΅ΡΠΎΠ² Fe(III) ΠΈ
ΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Π΄ΠΈΠΌΠ΅ΡΠΎΠ² Fe(III)-O-Fe(III) Ρ ΡΠ΅ΡΡΠΎ- ΠΈ Π°Π½ΡΠΈΡΠ΅ΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΌ ΡΠΈΠΏΠ°ΠΌΠΈ ΠΎΠ±ΠΌΠ΅Π½Π°.
ΠΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΠ΅ΠΉΠ·Π΅Π½Π±Π΅ΡΠ³Π°-ΠΠΈΡΠ°ΠΊΠ°-Π²Π°Π½-Π€Π»Π΅ΠΊΠ° ΡΠ°ΡΡΡΠΈΡΠ°Π½Ρ ΠΎΠ±ΠΌΠ΅Π½Π½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅
ΠΊΠ»Π°ΡΡΠ΅ΡΠΎΠ² Π² Bi3Nb1-xFexO7-Ξ΄ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ
Π°ΡΠΎΠΌΠΎΠ². Π‘ ΡΠ΅Π»ΡΡ
ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π°ΡΠΎΠΌΠΎΠ² ΠΆΠ΅Π»Π΅Π·Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΡΠ²Π΅ΡΠ΄ΡΠ΅ ΡΠ°ΡΡΠ²ΠΎΡΡ ΠΈ
ΠΎΠΊΡΠΈΠ΄Ρ ΠΆΠ΅Π»Π΅Π·Π° FeO, Fe2O3 ΠΈ Fe3O4 ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ NEXAFS-ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ. ΠΠ½Π°Π»ΠΈΠ· Fe2p-ΡΠΏΠ΅ΠΊΡΡΠΎΠ²
NEXAFS ΠΆΠ΅Π»Π΅Π·ΠΎΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΠ²Π΅ΡΠ΄ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² ΠΈ ΠΎΠΊΡΠΈΠ΄ΠΎΠ² ΠΆΠ΅Π»Π΅Π·Π° ΠΏΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ Π°ΡΠΎΠΌΡ
ΠΆΠ΅Π»Π΅Π·Π° ΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ +3. Π ΠΠΠ -ΡΠΏΠ΅ΠΊΡΡΠ΅ ΠΎΠ±ΡΠ°Π·ΡΠ° Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ
ΠΆΠ΅Π»Π΅Π·Π° ΡΠΎΠ΄Π΅ΡΠΆΠΈΡΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΡΠΉ ΡΠΈΠ³Π½Π°Π» Ρ g = 4,27 ΡΠΎ ΡΠ»Π°Π±ΡΠΌ ΠΏΠ»Π΅ΡΠΎΠΌ ΠΏΡΠΈ g ~ 8. Π ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΠ²Π΅ΡΠ΄ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² Bi3Nb1-xFexO7-Ξ΄ (0,02 β€ Ρ
β€ 0,04) ΡΠΎΠ΄Π΅ΡΠΆΠΈΡΡΡ ΡΠΈΡΠΎΠΊΠ°Ρ ΠΏΠΎΠ»ΠΎΡΠ° ΠΌΠ°Π»ΠΎΠΉ
ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ Π² ΠΎΠ±Π»Π°ΡΡΠΈ g ~ 2,28. Π ΠΠΠ -ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² (Ρ
> 0,04) ΠΏΡΠΎΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΈΡΠΎΠΊΠ°Ρ,
ΡΠ»Π΅Π³ΠΊΠ° Π°ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½Π°Ρ Π»ΠΈΠ½ΠΈΡ, ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ Π²ΠΎΠΊΡΡΠ³ g ~ 2,
1,5Mn doped BiNbO 4 ceramics: phase transitions, magnetic properties, NEXAFS and EPR spectra
Synthesis, properties and structure of inorganic compound
1,5Mn doped BiNbO 4 ceramics: phase transitions, magnetic properties, NEXAFS and EPR spectra
Synthesis, properties and structure of inorganic compound
ΠΡΡΠ»Π΅Π΄oΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°Π³Π½ΠΈΡΠ½oΠΉ Π²oΡΠΏΡΠΈΠΈΠΌΡΠΈΠ²oΡΡΠΈ ΠΈ ΠΠΠ Biβ NbββββCoββOββ βΞ΄
Magnetic susceptibility, microstructure and EPR of cobalt-containing solid solutions
with layered perovskite-like structure Bi5Nb3β3xCo3xO15βΞ΄ have been studied. Solid solutions of
Bi5Nb3β3xCo3xO15βΞ΄ (x60.005) can be crystallized in tetragonal syngony (sp. gr. P4/mmm), as cobalt
content increases, monoclinic distortion of the unit cell emerges at 0.005 < x 6 0.04 (sp. gr. P2/m).
The formation of exchange-bound aggregates of Π‘o(III) and Co(II) atoms predominantly with antiferromagnetic
exchange types has been found in the solid solutions. EPR indirectly confirms that cobalt
ions are in octahedral positions of substitution of Nb(V) ionsΠΡΡΠ»Π΅Π΄oΠ²Π°Π½Ρ ΠΌΠ°Π³Π½ΠΈΡΠ½Π°Ρ Π²oΡΠΏΡΠΈΠΈΠΌΡΠΈΠ²oΡΡΡ, ΠΌΠΈΠΊΡoΡΡΡΡΠΊΡΡΡΠ° ΠΈ ΠΠΠ ΠΊoΠ±Π°Π»ΡΡΡoΠ΄Π΅ΡΠΆΠ°ΡΠΈx ΡΠ²Π΅ΡΠ΄Ρx ΡΠ°ΡΡΠ²oΡoΠ² Bi5Nb3β3xCo3xO15βΞ΄ Ρo ΡΠ»oΠΈΡΡoΠΉ ΠΏΠ΅ΡoΠ²ΡΠΊΠΈΡoΠΏoΠ΄oΠ±Π½oΠΉ ΡΡΡΡΠΊΡΡΡoΠΉ. Π’Π²Π΅ΡΠ΄ΡΠ΅ ΡΠ°ΡΡΠ²oΡΡ Bi5Nb3β3xCo3xO15βΞ΄ (x 6 0.005) ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·ΡΡΡΡΡ Π² ΡΠ΅ΡΡΠ°Π³oΠ½Π°Π»ΡΠ½oΠΉ ΡΠΈΠ½Π³oΠ½ΠΈΠΈ (ΠΏΡ.
Π³Ρ. P4/mmm), Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΡoΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΊoΠ±Π°Π»ΡΡΠ° Π²oΠ·Π½ΠΈΠΊΠ°Π΅Ρ ΠΌoΠ½oΠΊΠ»ΠΈΠ½Π½oΠ΅ ΠΈΡΠΊΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½oΠΉ ΡΡΠ΅ΠΉΠΊΠΈ ΠΏΡΠΈ 0.005 < x 6 0.04 (ΠΏΡ. Π³Ρ. P2/m). Π ΡΠ²Π΅ΡΠ΄Ρx ΡΠ°ΡΡΠ²oΡΠ°x oΠ±Π½Π°ΡΡΠΆΠ΅Π½o oΠ±ΡΠ°Π·oΠ²Π°Π½ΠΈΠ΅
oΠ±ΠΌΠ΅Π½Π½o-ΡΠ²ΡΠ·Π°Π½Π½Ρx ΠΊΠ»Π°ΡΡΠ΅ΡoΠ² ΠΈΠ· Π°ΡoΠΌoΠ² Π‘o(III) ΠΈ Π‘o(II) ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½o Ρ Π°Π½ΡΠΈΡΠ΅ΡΡoΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΌ
ΡΠΈΠΏoΠΌ oΠ±ΠΌΠ΅Π½Π°. ΠΠΠ ΠΊoΡΠ²Π΅Π½Π½o ΠΏoΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ, ΡΡo ΠΈoΠ½Ρ ΠΊoΠ±Π°Π»ΡΡΠ° Π·Π°ΠΌΠ΅ΡΠ°ΡΡ oΠΊΡΠ°ΡΠ΄ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏoΠ·ΠΈΡΠΈΠΈ ΠΈoΠ½oΠ² Nb (V