24 research outputs found
On Two Models of the Light Pulse Delay in a Saturable Absorber
A comparative analysis of two approaches to description of the light
modulation pulse delay in a saturable absorber is presented. According to the
simplest model, the delay of the optical pulse is a result of distortion of its
shape due to absorption self-modulation in the nonlinear medium. The second
model of the effect, proposed at the beginning of our century, connects the
pulse delay with the so-called "slow light" resulting from the group velocity
reduction under conditions of the coherent population oscillations. It is shown
that all the known experimental data on the light pulse delay in saturable
absorbers can be comprehensively described in the framework of the simplest
model of saturable absorber and do not require invoking the effect of coherent
population oscillations with spectral hole-burning and anomalous modifications
of the light group velocity. It is concluded that the effect of group velocity
reduction under conditions of coherent population oscillations has not received
so far any experimental confirmation, and the assertions about real observation
of the "slow light" based on this mechanism are groundless.Comment: Regretfully, the journal version of the paper (in Optics and
Spectroscopy) appeared to be strongly corrupted due to ignorant editing. In
particular, "coherent population oscillations" (CPO) was replaced by
"population coherent oscillations" (PCO), "bleaching" - by "clearing", and
"bleachable absorber " - by "clearable absorber". Here we present original
version of the pape
Recommended from our members
Nondegenerate Four-Wave Mixing in Gold Nanocomposites Formed by Ion Implantation
Nondegenerate four-wave mixing technique has been used to investigate the third-order nonlinear susceptibility for nanocomposite material with Au nanocrystals formed inside a SiO{sub 2} glass matrix. High concentrations of encapsulated Au nanocrystals are formed by implantation of Au ions into fused silica glass substrates and thermal annealing. The size distribution and the depth profiles of the Au nanoparticles can be controlled by the implantation dose, energy and annealing temperatures. The high value of the third-order susceptibility - (0.26--1.3)x10{sup -7} esu was found in the range of the frequency detunings near the surface plasmon resonance. Two characteristic relaxation times, 0.66 ps and 5.3 ps, have been extracted from the detuning curve of the third-order susceptibility as the probe-beam frequency changes and the pump-beam frequency fixed at the plasmon resonance. The first relaxation time was attributed to electron-phonon relaxation, and the second to thermal diffusion to the host medium. The efficient nondegenerate conversion is attractive for optical processing