19 research outputs found
Optical conductivity of metal nanofilms and nanowires: The rectangular-box model
The conductivity tensor is introduced for the low-dimensional electron
systems. Within the particle-in-a-box model and the diagonal response
approximation, components of the conductivity tensor for a quasi-homogeneous
ultrathin metal film and wire are calculated under the assumption (where is the characteristic small dimension of the
system, is the Fermi wavelength for bulk metal). We find the
transmittance of ultrathin films and compare these results with available
experimental data. The analytical estimations for the size dependence of the
Fermi level are presented, and the oscillations of the Fermi energy in
ultrathin films and wires are computed. Our results demonstrate the strong size
and frequency dependences of the real and imaginary parts of the conductivity
components in the infrared range. A sharp distinction of the results for Au and
Pb is observed and explained by the difference in the relaxation time of these
metals.Comment: 13 pages, 8 figure
Energetics of metal slabs and clusters: the rectangle-box model
An expansion of energy characteristics of wide thin slab of thickness L in
power of 1/L is constructed using the free-electron approximation and the model
of a potential well of finite depth. Accuracy of results in each order of the
expansion is analyzed. Size dependences of the work function and electronic
elastic force for Au and Na slabs are calculated. It is concluded that the work
function of low-dimensional metal structure is always smaller that of
semi-infinite metal sample.
A mechanism for the Coulomb instability of charged metal clusters, different
from Rayleigh's one, is discussed. The two-component model of a metallic
cluster yields the different critical sizes depending on a kind of charging
particles (electrons or ions). For the cuboid clusters, the electronic spectrum
quantization is taken into account. The calculated critical sizes of
Ag_{N}^{2-} and Au_{N}^{3-} clusters are in a good agreement with experimental
data. A qualitative explanation is suggested for the Coulomb explosion of
positively charged Na_{\N}^{n+} clusters at 3<n<5.Comment: 11 pages, 6 figures, 1 tabl
Density-functional theory of elastically deformed finite metallic system: work function and surface stress
The effect of external strain on surface properties of simple metals is
considered within the modified stabilized jellium model. The equations for the
stabilization energy of the deformed Wigner-Seitz cells are derived as a
function of the bulk electron density and the given deformation. The results
for surface stress and work function of aluminium calculated within the
self-consistent Kohn-Sham method are also given. The problem of anisotropy of
the work function of finite system is discussed. A clear explanation of
independent experiments on stress-induced contact potential difference at metal
surfaces is presented.Comment: 15 pages, 1 figur