4,788 research outputs found

    Generalized Hamilton-Jacobi equations for nonholonomic dynamics

    Full text link
    Employing a suitable nonlinear Lagrange functional, we derive generalized Hamilton-Jacobi equations for dynamical systems subject to linear velocity constraints. As long as a solution of the generalized Hamilton-Jacobi equation exists, the action is actually minimized (not just extremized)

    Screening and finite size corrections to the octupole and Schiff moments

    Full text link
    Parity (P) and time reversal (T) violating nuclear forces create P, T -odd moments in expansion of the nuclear electrostatic potential. We derive expression for the nuclear electric octupole field which includes the electron screening correction (similar to the screening term in the Schiff moment). Then we calculate the Z alpha corrections to the Schiff moment which appear due to the finite nuclear size. Such corrections are important in heavy atoms with nuclear charge Z > 50. The Schiff and octupole moments induce atomic electric dipole moments (EDM) and P, T -odd interactions in molecules which are measured in numerous experiments to test CP-violation theories

    Enhancement of the electric dipole moment of the electron in the YbF molecule

    Full text link
    We calculate an effective electric field on the unpaired electron in the YbF molecule. This field determines sensitivity of the molecular experiment to the electric dipole moment of the electron. We use experimental value of the spin-doubling constant to estimate the admixture of the configuration with the hole in the 4f-shell of Ytterbium to the ground state of the molecule. This admixture reduces the field by 7%. Our value for the effictive field is 5.1 a.u. = 2.5 10^{10} V/cm.Comment: 5 pages, LATEX, uses revtex.st

    Fermi acceleration in time-dependent rectangular billiards due to multiple passages through resonances

    Full text link
    We consider a slowly rotating rectangular billiard with moving boundaries and use the canonical perturbation theory to describe the dynamics of a billiard particle. In the process of slow evolution certain resonance conditions can be satisfied. Correspondingly, phenomena of scattering on a resonance and capture into a resonance happen in the system. These phenomena lead to destruction of adiabatic invariance and to unlimited acceleration of the particle.Comment: 20 pages. Presented on School-Conference "Mathematics and Physics of Billiard-Like Systems" (Ubatuba, 2011). Accepted to Chao

    Using Molecules to Measure Nuclear Spin-Dependent Parity Violation

    Full text link
    Nuclear spin-dependent parity violation arises from weak interactions between electrons and nucleons, and from nuclear anapole moments. We outline a method to measure such effects, using a Stark-interference technique to determine the mixing between opposite-parity rotational/hyperfine levels of ground-state molecules. The technique is applicable to nuclei over a wide range of atomic number, in diatomic species that are theoretically tractable for interpretation. This should provide data on anapole moments of many nuclei, and on previously unmeasured neutral weak couplings

    Extension of the Schiff theorem to ions and molecules

    Full text link
    According to the Schiff theorem the nuclear electric dipole moment (EDM) is screened in neutral atoms. In ions this screening is incomplete. We extend a derivation of the Schiff theorem to ions and molecules. The finite nuclear size effects are considered including Z^2 alpha^2 corrections to the nuclear Schiff moment which are significant in all atoms and molecules of experimental interest. We show that in majority of ionized atoms the nuclear EDM contribution to the atomic EDM dominates while in molecules the contribution of the Schiff moment dominates. We also consider the screening of electron EDM in ions

    Enhancement of the electric dipole moment of the electron in BaF molecule

    Full text link
    We report results of ab initio calculation of the spin-rotational Hamiltonian parameters including P- and P,T-odd terms for the BaF molecule. The ground state wave function of BaF molecule is found with the help of the Relativistic Effective Core Potential method followed by the restoration of molecular four-component spinors in the core region of barium in the framework of a non-variational procedure. Core polarization effects are included with the help of the atomic Many Body Perturbation Theory for Barium atom. For the hyperfine constants the accuracy of this method is about 5-10%.Comment: 8 pages, REVTEX, report at II International Symposium on Symmetries in Subatomic Physics, Seattle 199

    A Necessary Condition for existence of Lie Symmetries in Quasihomogeneous Systems of Ordinary Differential Equations

    Full text link
    Lie symmetries for ordinary differential equations are studied. In systems of ordinary differential equations, there do not always exist non-trivial Lie symmetries around equilibrium points. We present a necessary condition for existence of Lie symmetries analytic in the neighbourhood of an equilibrium point. In addition, this result can be applied to a necessary condition for existence of a Lie symmetry in quasihomogeneous systems of ordinary differential equations. With the help of our main theorem, it is proved that several systems do not possess any analytic Lie symmetries.Comment: 15 pages, no figures, AMSLaTe
    • …
    corecore