60 research outputs found
Counting function fluctuations and extreme value threshold in multifractal patterns: the case study of an ideal noise
To understand the sample-to-sample fluctuations in disorder-generated
multifractal patterns we investigate analytically as well as numerically the
statistics of high values of the simplest model - the ideal periodic
Gaussian noise. By employing the thermodynamic formalism we predict the
characteristic scale and the precise scaling form of the distribution of number
of points above a given level. We demonstrate that the powerlaw forward tail of
the probability density, with exponent controlled by the level, results in an
important difference between the mean and the typical values of the counting
function. This can be further used to determine the typical threshold of
extreme values in the pattern which turns out to be given by
with . Such observation provides a
rather compelling explanation of the mechanism behind universality of .
Revealed mechanisms are conjectured to retain their qualitative validity for a
broad class of disorder-generated multifractal fields. In particular, we
predict that the typical value of the maximum of intensity is to be
given by , where is the
corresponding singularity spectrum vanishing at . For the
noise we also derive exact as well as well-controlled approximate
formulas for the mean and the variance of the counting function without
recourse to the thermodynamic formalism.Comment: 28 pages; 7 figures, published version with a few misprints
corrected, editing done and references adde
- …