40 research outputs found

    Influence of Photoexcitation Depth on Luminescence Spectra of Bulk GaAs Single Crystals and Defect Structure Characterization

    Full text link
    The results of investigation of bulk GaAs photoluminescence are presented taken from near-surface layers of different thicknesses using for excitation the light with the wavelengths which are close but some greater than the excitonic absorption resonances (so-called bulk photoexcitation). Only the excitonic and band-edge luminescence is seen under the interband excitation, while under the bulk excitation, the spectra are much more informative. The interband excited spectra of all the samples investigated in the present work are practically identical, whereas the bulk excited PL spectra are different for different samples and excitation depths and provide the information on the deep-level point defect composition of the bulk materials.Comment: Aalborg Summer School on Nonlinear Optics, Aalborg, Denmark, 7-12 August 199

    Metal silicide/poly-Si Schottky diodes for uncooled microbolometers

    Get PDF
    Nickel silicide Schottky diodes formed on polycrystalline Si films are proposed as temperature sensors of monolithic uncooled microbolometer IR focal plane arrays. Structure and composition of nickel silicide/polycrystalline silicon films synthesized in a low-temperature process are examined by means of transmission electron microscopy. The Ni silicide is identified as multi-phase compound composed by 20 to 40% of Ni3Si, 30 to 60% of Ni2Si and 10 to 30% of NiSi with probable minor content of NiSi2 at the silicide/poly-Si interface. Rectification ratios of the Schottky diodes vary from ~100 to ~20 for the temperature increasing from 22 to 70C; they exceed 1000 at 80K. A barrier of ~0.95 eV is found to control the photovoltage spectra at room temperature. A set of barriers is observed in photo-emf spectra at 80K and attributed to the Ni-silicide/poly-Si interface. Absolute values of temperature coefficients of voltage and current are found to vary from 0.3 to 0.6%/K for forward biasing and around 2.5%/K for reverse biasing of the diodes.Comment: 18 pages, 7 figure

    Elastic Mid-Infrared Light Scattering: a Basis for Microscopy of Large-Scale Electrically Active Defects in Semiconducting Materials

    Full text link
    A method of the mid-IR-laser microscopy has been proposed for the investigation of the large-scale electrically and recombination active defects in semiconductors and non-destructive inspection of semiconductor materials and structures in the industries of microelectronics and photovoltaics. The basis for this development was laid with a wide cycle of the investigations on the low-angle mid-IR-light scattering in semiconductors. The essence of the technical idea was to apply the dark-field method for spatial filtering of the scattered light in the scanning mid-IR-laser microscope. This approach enabled the visualization of large-scale electrically active defects which are the regions enriched with ionized electrically active centers. The photoexcitation of excess carriers within a small volume located in the probe mid-IR-laser beam enabled the visualization of the large-scale recombination-active defects like those revealed in the optical or electron beam induced current methods. Both these methods of the scanning mid-IR-laser microscopy are now introduced in detail in the present paper as well as a summary of techniques used in the standard method of the lowangle mid-IR-light scattering itself. Besides the techniques for direct observations, methods for analyses of the defect composition associated with the mid-IR-laser microscopy are also discussed in the paper.Comment: 44 pages, 13 figures. A good oldi
    corecore