256 research outputs found

    A dip in the UHECR spectrum and the transition from galactic to extragalactic cosmic rays

    Get PDF
    The dip is a feature in the diffuse spectrum of ultra-high energy (UHE) protons caused by electron-positron pair production on the cosmic microwave background (CMB) radiation. For a power-law generation spectrum E2.7E^{-2.7}, the calculated position and shape of the dip is confirmed with high accuracy by the spectra observed by the Akeno-AGASA, HiRes, Yakutsk and Fly's Eye detectors. When the particle energies, measured in these detectors, are calibrated by the dip, their fluxes agree with a remarkable accuracy. The predicted shape of the dip is quite robust. The dip is only modified strongly when the fraction of nuclei heavier than protons is high at injection, which imposes some restrictions on the mechanisms of acceleration operating in UHECR sources. The existence of the dip, confirmed by observations, implies that the transition from galactic to extragalactic cosmic rays occurs at E \lsim 1\times 10^{18} eV. We show that at energies lower than a characteristic value Ecr1×1018E_{\rm cr}\approx 1\times 10^{18} eV, the spectrum of extragalactic cosmic rays flattens in all cases of interest, and it provides a natural transition to a steeper galactic cosmic ray spectrum. This transition occurs at some energy below EcrE_{\rm cr}, corresponding to the position of the so-called second knee. We discuss extensively the constraints on this model imposed by current knowledge of acceleration processes and sources of UHECR and compare it with the traditional model of transition at the ankle.Comment: Version Accepted for Publication in Astroparticle Physics (minor changes

    Irreversible flow of vortex matter: polycrystal and amorphous phases

    Get PDF
    We investigate the microscopic mechanisms giving rise to plastic depinning and irreversible flow in vortex matter. The topology of the vortex array crucially determines the flow response of this system. To illustrate this claim, two limiting cases are considered: weak and strong pinning interactions. In the first case disorder is strong enough to introduce plastic effects in the vortex lattice. Diffraction patterns unveil polycrystalline lattice topology with dislocations and grain boundaries determining the electromagnetic response of the system. Filamentary flow is found to arise as a consequence of dislocation dynamics. We analize the stability of vortex lattices against the formation of grain boundaries, as well as the steady state dynamics for currents approaching the depinning critical current from above, when vortex motion is mainly localized at the grain boundaries. On the contrary, a dislocation description proves no longer adequate in the second limiting case examined. For strong pinning interactions, the vortex array appears completely amorphous and no remnant of the Abrikosov lattice order is left. Here we obtain the critical current as a function of impurity density, its scaling properties, and characterize the steady state dynamics above depinning. The plastic depinning observed in the amorphous phase is tightly connected with the emergence of channel-like flow. Our results suggest the possibility of establishing a clear distinction between two topologically disordered vortex phases: the vortex polycrystal and the amorphous vortex matter.Comment: 13 pages, 16 figure

    Unimpeded permeation of water through helium-leak-tight graphene-based membranes

    Full text link
    Permeation through nanometer pores is important in the design of materials for filtration and separation techniques and because of unusual fundamental behavior arising at the molecular scale. We found that submicron-thick membranes made from graphene oxide can be completely impermeable to liquids, vapors and gases, including helium, but allow unimpeded permeation of water (H2O permeates through the membranes at least 10^10 times faster than He). We attribute these seemingly incompatible observations to a low-friction flow of a monolayer of water through two dimensional capillaries formed by closely spaced graphene sheets. Diffusion of other molecules is blocked by reversible narrowing of the capillaries in low humidity and/or by their clogging with water

    Precise and ultrafast molecular sieving through graphene oxide membranes

    Full text link
    There has been intense interest in filtration and separation properties of graphene-based materials that can have well-defined nanometer pores and exhibit low frictional water flow inside them. Here we investigate molecular permeation through graphene oxide laminates. They are vacuum-tight in the dry state but, if immersed in water, act as molecular sieves blocking all solutes with hydrated radii larger than 4.5A. Smaller ions permeate through the membranes with little impedance, many orders of magnitude faster than the diffusion mechanism can account for. We explain this behavior by a network of nanocapillaries that open up in the hydrated state and accept only species that fit in. The ultrafast separation of small salts is attributed to an 'ion sponge' effect that results in highly concentrated salt solutions inside graphene capillaries

    Depinning and critical current characteristics of topologically defected vortex lattices

    Get PDF
    We discuss the role of dislocation assemblies such as grain boundaries in the dynamic response of a driven vortex lattice. We simulate the depinning of a field-cooled vortex polycrystal and observe a general enhancement of the critical current as well as a distinct crossover in the characterisitic of this quantity as a function of pinning density. The results agree with analytical predictions for grain boundary depinning. The dynamics of grain boundaries thus proves an essential mechanism underlying the flow response of defected vortex lattices and the corresponding transport properties of the superconducting material. We emphasize the connection between the topological rearrangements of the lattice and its threshold dynamics. Our theory encompasses a variety of experimental observations in vortex matter as well as in colloidal crystals.Comment: 7 Figure

    Revealing common artifacts due to ferromagnetic inclusions in highly-oriented pyrolytic graphite

    Full text link
    We report on an extensive investigation to figure out the origin of room-temperature ferromagnetism that is commonly observed by SQUID magnetometry in highly-oriented pyrolytic graphite (HOPG). Electron backscattering and X-ray microanalysis revealed the presence of micron-size magnetic clusters (predominantly Fe) that are rare and would be difficult to detect without careful search in a scanning electron microscope in the backscattering mode. The clusters pin to crystal boundaries and their quantities match the amplitude of typical ferromagnetic signals. No ferromagnetic response is detected in samples where we could not find such magnetic inclusions. Our experiments show that the frequently reported ferromagnetism in pristine HOPG is most likely to originate from contamination with Fe-rich inclusions introduced presumably during crystal growth.Comment: 8 pages, 7 figure

    Institutional analysis of the regulatory and legal framework for financial reporting control in Russia

    Get PDF
    The study contains the main approaches to the determination of various institutions affecting Russian accounting from the standpoint of their formal and informal types. In modern conditions, the economic actions of a subject must be matched to external factors that determine the correctness of economic decision-making, as well as consistency and the development of correct patterns and behavior algorithms that are most effective for each specific situation. Through the institutional analysis, the authors have identified several inconsistencies in the regulatory framework of related institutions and suggested ways to eliminate these disparities. Inter-institutional discrepancies have been found between law and accounting institutions, indicating non-compliance in the accounting practice of the substance over form principle, between recognition in the bookkeeping and tax accounting of the transfer of assets and liabilities ownership, as well as differences in the recording of investment real estate in the financial statements according to IFRS institutions and Russian national standards.peer-reviewe

    Magnetoresistance in Co-hBN-NiFe tunnel junctions enhanced by resonant tunneling through single defects in ultrathin hBN barriers

    Full text link
    Hexagonal boron nitride (hBN) is a prototypical high-quality two-dimensional insulator and an ideal material to study tunneling phenomena, as it can be easily integrated in vertical van der Waals devices. For spintronic devices, its potential has been demonstrated both for efficient spin injection in lateral spin valves and as a barrier in magnetic tunnel junctions (MTJs). Here we reveal the effect of point defects inevitably present in mechanically exfoliated hBN on the tunnel magnetoresistance of Co-hBN-NiFe MTJs. We observe a clear enhancement of both the conductance and magnetoresistance of the junction at well-defined bias voltages, indicating resonant tunneling through magnetic (spin-polarized) defect states. The spin polarization of the defect states is attributed to exchange coupling of a paramagnetic impurity in the few-atomic-layer thick hBN to the ferromagnetic electrodes. This is confirmed by excellent agreement with theoretical modelling. Our findings should be taken into account in analyzing tunneling processes in hBN-based magnetic devices. More generally, our study shows the potential of using atomically thin hBN barriers with defects to engineer the magnetoresistance of MTJs and to achieve spin filtering, opening the door towards exploiting the spin degree of freedom in current studies of point defects as quantum emitters
    corecore