543 research outputs found
The One-dimensional KPZ Equation and the Airy Process
Our previous work on the one-dimensional KPZ equation with sharp wedge
initial data is extended to the case of the joint height statistics at n
spatial points for some common fixed time. Assuming a particular factorization,
we compute an n-point generating function and write it in terms of a Fredholm
determinant. For long times the generating function converges to a limit, which
is established to be equivalent to the standard expression of the n-point
distribution of the Airy process.Comment: 15 page
Critical behavior of disordered systems with replica symmetry breaking
A field-theoretic description of the critical behavior of weakly disordered
systems with a -component order parameter is given. For systems of an
arbitrary dimension in the range from three to four, a renormalization group
analysis of the effective replica Hamiltonian of the model with an interaction
potential without replica symmetry is given in the two-loop approximation. For
the case of the one-step replica symmetry breaking, fixed points of the
renormalization group equations are found using the Pade-Borel summing
technique. For every value , the threshold dimensions of the system that
separate the regions of different types of the critical behavior are found by
analyzing those fixed points. Specific features of the critical behavior
determined by the replica symmetry breaking are described. The results are
compared with those obtained by the -expansion and the scope of the
method applicability is determined.Comment: 18 pages, 2 figure
Non-perturbative phenomena in the three-dimensional random field Ising model
The systematic approach for the calculations of the non-perturbative
contributions to the free energy in the ferromagnetic phase of the random field
Ising model is developed. It is demonstrated that such contributions appear due
to localized in space instanton-like excitations. It is shown that away from
the critical region such instanton solutions are described by the set of the
mean-field saddle-point equations for the replica vector order parameter, and
these equations can be formally reduced to the only saddle-point equation of
the pure system in dimensions (D-2). In the marginal case, D=3, the
corresponding non-analytic contribution is computed explicitly. Nature of the
phase transition in the three-dimensional random field Ising model is
discussed.Comment: 12 page
Critical region of the random bond Ising model
We describe results of the cluster algorithm Special Purpose Processor
simulations of the 2D Ising model with impurity bonds. Use of large lattices,
with the number of spins up to , permitted to define critical region of
temperatures, where both finite size corrections and corrections to scaling are
small. High accuracy data unambiguously show increase of magnetization and
magnetic susceptibility effective exponents and , caused by
impurities. The and singularities became more sharp, while the
specific heat singularity is smoothed. The specific heat is found to be in a
good agreement with Dotsenko-Dotsenko theoretical predictions in the whole
critical range of temperatures.Comment: 11 pages, 16 figures (674 KB) by request to authors:
[email protected] or [email protected], LITP-94/CP-0
Bethe anzats derivation of the Tracy-Widom distribution for one-dimensional directed polymers
The distribution function of the free energy fluctuations in one-dimensional
directed polymers with -correlated random potential is studied by
mapping the replicated problem to a many body quantum boson system with
attractive interactions. Performing the summation over the entire spectrum of
excited states the problem is reduced to the Fredholm determinant with the Airy
kernel which is known to yield the Tracy-Widom distributionComment: 5 page
On Vertex Operator Construction of Quantum Affine Algebras
We describe the construction of the quantum deformed affine Lie algebras
using the vertex operators in the free field theory. We prove the Serre
relations for the quantum deformed Borel subalgebras of affine algebras, namely
the case of is considered in detail. We provide some
formulas for generators of affine algebra.Comment: LaTeX, 9 pages; typos corrected, references adde
Notes on the Verlinde formula in non-rational conformal field theories
We review and extend evidence for the validity of a generalized Verlinde
formula in particular non-rational conformal field theories. We identify a
subset of representations of the chiral algebra in non-rational conformal field
theories that give rise to an analogue of the relation between modular
S-matrices and fusion coefficients in rational conformal field theories. To
that end we review and extend the Cardy-type brane calculations in bosonic and
supersymmetric Liouville theory (and its duals) as well as in the hyperbolic
three-plane H3+. We analyze the three-point functions of Liouville theory and
of H3+ in detail to directly identify the fusion coefficients from the operator
product expansion.Comment: 29 pages, 6 figures, v2: minor corrections, PRD versio
Renormalisation group calculation of correlation functions for the 2D random bond Ising and Potts models
We find the cross-over behavior for the spin-spin correlation function for the 2D Ising and 3-states Potts model with random bonds at the critical point. The procedure employed is the renormalisation approach of the perturbation series around the conformal field theories representing the pure models. We obtain a crossover in the amplitude for the correlation function for the Ising model which doesn't change the critical exponent, and a shift in the critical exponent produced by randomness in the case of the Potts model. A comparison with numerical data is discussed briefly
The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class
We explain the exact solution of the 1+1 dimensional Kardar-Parisi-Zhang
equation with sharp wedge initial conditions. Thereby it is confirmed that the
continuum model belongs to the KPZ universality class, not only as regards to
scaling exponents but also as regards to the full probability distribution of
the height in the long time limit.Comment: Proceedings StatPhys 2
- …