315 research outputs found

    Opening an energy gap in an electron double layer system at integer filling factor in a tilted magnetic field

    Full text link
    We employ magnetocapacitance measurements to study the spectrum of a double layer system with gate-voltage-tuned electron density distributions in tilted magnetic fields. For the dissipative state in normal magnetic fields at filling factor ν=3\nu=3 and 4, a parallel magnetic field component is found to give rise to opening a gap at the Fermi level. We account for the effect in terms of parallel-field-caused orthogonality breaking of the Landau wave functions with different quantum numbers for two subbands.Comment: 4 pages, 4 figures included, to appear in JETP Letter

    Metal-insulator transition in a two-dimensional electron system: the orbital effect of in-plane magnetic field

    Full text link
    The conductance of an open quench-disordered two-dimensional (2D) electron system subject to an in-plane magnetic field is calculated within the framework of conventional Fermi liquid theory applied to actually a three-dimensional system of spinless electrons confined to a highly anisotropic (planar) near-surface potential well. Using the calculation method suggested in this paper, the magnetic field piercing a finite range of infinitely long system of carriers is treated as introducing the additional highly non-local scatterer which separates the circuit thus modelled into three parts -- the system as such and two perfect leads. The transverse quantization spectrum of the inner part of the electron waveguide thus constructed can be effectively tuned by means of the magnetic field, even though the least transverse dimension of the waveguide is small compared to the magnetic length. The initially finite (metallic) value of the conductance, which is attributed to the existence of extended modes of the transverse quantization, decreases rapidly as the magnetic field grows. This decrease is due to the mode number reduction effect produced by the magnetic field. The closing of the last current-carrying mode, which is slightly sensitive to the disorder level, is suggested as the origin of the magnetic-field-driven metal-to-insulator transition widely observed in 2D systems.Comment: 19 pages, 7 eps figures, the extension of cond-mat/040613

    Quantization of the Hall conductivity well beyond the adiabatic limit in pulsed magnetic fields

    Full text link
    We measure the Hall conductivity, σxy\sigma_{xy}, on a Corbino geometry sample of a high-mobility AlGaAs/GaAs heterostructure in a pulsed magnetic field. At a bath temperature about 80 mK, we observe well expressed plateaux in σxy\sigma_{xy} at integer filling factors. In the pulsed magnetic field, the Laughlin condition of the phase coherence of the electron wave functions is strongly violated and, hence, is not crucial for σxy\sigma_{xy} quantization.Comment: 4 pages, 4 figures, submitted to PR

    Observation of the parallel-magnetic-field-induced superconductor-insulator transition in thin amorphous InO films

    Full text link
    We study the response of a thin superconducting amorphous InO film with variable oxygen content to a parallel magnetic field. A field-induced superconductor-insulator transition (SIT) is observed that is very similar to the one in normal magnetic fields. As the boson-vortex duality, which is the key-stone of the theory of the field-induced SIT, is obviously absent in the parallel configuration, we have to draw conclusion about the theory insufficiency.Comment: 3 pages, 4 figure

    Indication of the ferromagnetic instability in a dilute two-dimensional electron system

    Full text link
    The magnetic field B_c, in which the electrons become fully spin-polarized, is found to be proportional to the deviation of the electron density from the zero-field metal-insulator transition in a two-dimensional electron system in silicon. The tendency of B_c to vanish at a finite electron density suggests a ferromagnetic instability in this strongly correlated electron system.Comment: 4 pages, postscript figures included. Revised versio

    Equilibration between edge states in the fractional quantum Hall effect regime at high imbalances

    Full text link
    We experimentally study equilibration between edge states, co-propagating at the edge of the fractional quantum Hall liquid, at high initial imbalances. We find an anomalous increase of the conductance between the fractional edge states at the filling factor ν=2/5\nu=2/5 in comparison with the expected one for the model of independent edge states. We conclude that the model of independent fractional edge states is not suitable to describe the experimental situation at ν=2/5\nu=2/5.Comment: 4 page

    Metal-insulator transition in a 2D electron gas: Equivalence of two approaches for determining the critical point

    Full text link
    The critical electron density for the metal-insulator transition in a two-dimensional electron gas can be determined by two distinct methods: (i) a sign change of the temperature derivative of the resistance, and (ii) vanishing activation energy and vanishing nonlinearity of current-voltage characteristics as extrapolated from the insulating side. We find that in zero magnetic field (but not in the presence of a parallel magnetic field), both methods give equivalent results, adding support to the existence of a true zero-field metal-insulator transition.Comment: As publishe

    Temperature-Dependence of the Resistivity of a Dilute 2D Electron System in High Parallel Magnetic Field

    Full text link
    We report measurements of the resistance of silicon MOSFETs as a function of temperature in high parallel magnetic fields where the 2D system of electrons has been shown to be fully spin-polarized. A magnetic field suppresses the metallic behavior observed in the absence of a magnetic field. In a field of 10.8 T, insulating behavior is found for densities up to n_s approximately 1.35 x 10^{11} cm^{-2} or 1.5 n_c; above this density the resistance is a very weak function of temperature, varying less than 10% between 0.25 K and 1.90 K. At low densities the resistance goes to infinity more rapidly as the temperature is reduced than in zero field and the magnetoresistance diverges as T goes to 0.Comment: 4 pages, including 4 figures. References adde
    corecore