303 research outputs found
Influence of the photon - neutrino processes on magnetar cooling
The photon-neutrino processes ,
and are investigated
in the presence of a strongly magnetized and dense electron-positron plasma.
The amplitudes of the reactions and
are obtained. In the case of a cold degenerate
plasma contributions of the considering processes to neutrino emissivity are
calculated. It is shown that contribution of the process to neutrino emissivity is supressed in comparision with the
contributions of the processes and
. The constraint on the magnetic field strength in the
magnetar outer crust is obtained.Comment: 8 pages, LaTeX, 2 PS figures, based on the talk presented by D.A.
Rumyantsev at the XV International Seminar Quarks'2008, Sergiev Posad, Moscow
Region, May 23-29, 2008, to appear in the Proceeding
Curing of epoxy resin DER-331by Hexakis (4-acetamidophenoxy) cyclotriphosphazene and properties of the prepared composition
The method of optical wedge revealed that the optimum temperature for compatibility of hexakis(4-acetamidophenoxy)cyclotriphosphazene (ACP) and DER-331 epoxy resin is in the range of 220–260◦C. The interdiffusion time of components at these temperatures is about 30 min. The TGA and differential scanning calorimetry (DSC) methods revealed the curing temperature of 280◦C for thiscomposition. IRspectroscopyconfirmedthatthereactionbetweentheresinandACPiscompleted within 10 mi
Laser Irradiation as a Tool to Control the Resonance Energy Transfer in Bacteriorhodopsin–Quantum Dot Bio-Nano Hybrid Material
Bacteriorhodopsin (BR) is a natural photosensitive protein which can be considered promising in photovoltaics and optoelectronics because of its ability to produce a pronounced electrochemical response and controllably change its absorption spectrum under light excitation. However, its applicability is limited by its narrow absorption spectrum and low values of the absorption cross sections. Semiconductor quantum dots (QDs), which have high one- and two-photon absorption cross-sections in a UVand NIR spectral regions, respectively, can significantly improve the light sensitivity of BR by means of Förster resonance energy transfer (FRET) from QD to BR. In this work, we demonstrate the possibility to control the efficiency of FRET from QD to BR within electrostatically bound complexes of QD and purple membranes (PM) containing BR. We show that laser irradiation of QDs at different wavelengths leads to distinct changes (rise or decrease) of QD luminescence quantum yield (QY) without changing of QD structure. Such photo-induced changes in the QY of QD lead to a corresponding change in the efficiency of FRET. We have estimated efficiencies of FRET from QD to BR in the PM complexes composed of irradiated and non-irradiated QDs and found the increase in FRET efficiency with irradiated QDs
Free-space subcarrier wave quantum communication
We experimentally demonstrate quantum communication in 10 dB loss outdoor atmospheric channel with 5 kbit/s bitrate using subcarrier wave coding method. Free-space link was organized by telescoping system with symmetric fiber-optic collimators
Formation of "Lightnings" in a Neutron Star Magnetosphere and the Nature of RRATs
The connection between the radio emission from "lightnings" produced by the
absorption of high-energy photons from the cosmic gamma-ray background in a
neutron star magnetosphere and radio bursts from rotating radio transients
(RRATs) is investigated. The lightning length reaches 1000 km; the lightning
radius is 100 m and is comparable to the polar cap radius. If a closed
magnetosphere is filled with a dense plasma, then lightnings are efficiently
formed only in the region of open magnetic field lines. For the radio emission
from a separate lightning to be observed, the polar cap of the neutron star
must be directed toward the observer and, at the same time, the lightning must
be formed. The maximum burst rate is related to the time of the plasma outflow
from the polar cap region. The typical interval between two consecutive bursts
is ~100 s. The width of a single radio burst can be determined both by the
width of the emission cone formed by the lightning emitting regions at some
height above the neutron star surface and by a finite lightning lifetime. The
width of the phase distribution for radio bursts from RRATs, along with the
integrated pulse width, is determined by the width of the bundle of open
magnetic field lines at the formation height of the radio emission. The results
obtained are consistent with the currently available data and are indicative of
a close connection between RRATs, intermittent pulsars, and extreme nullers.Comment: 24 pages, no figures, references update
Neoglycolipids Micelle-like Structures as a Basis for Drug Delivery Systems
Targeted drug delivery is one of the most promising tasks of nanomedicine, as this is a real way to increase the effectiveness of therapeutic effects against many diseases. In this regard, the development of new inexpensive highly effective stimulating and non-immunogenic drug delivery systems (DDS) is of great importance. In this work new molecular candidates were proposed and studied for the creation of such systems based on the use of new compounds, neoglycolipids. It is shown that these compounds are capable of self-association in aqueous solutions and can serve as potential carriers of drug compounds with targeted delivery determined by their terminal groups (in particular, glycans). The processes of their associates formation and features of their structure are investigated. The results show that these selforganizing nanoscale systems can be used as a basis for developing new drug delivery systems.
Keywords: neoglycolipids, micelle-like structures, small-angle X-ray scattering, molecular dynamics simulatio
Electric field of a pointlike charge in a strong magnetic field and ground state of a hydrogenlike atom
In an external constant magnetic field, so strong that the electron Larmour
length is much shorter than its Compton length, we consider the modification of
the Coulomb potential of a point charge owing to the vacuum polarization. We
establish a short-range component of the static interaction in the Larmour
scale, expressed as a Yukawa-like law, and reveal the corresponding "photon
mass" parameter. The electrostatic force regains its long-range character in
the Compton scale: the tail of the potential follows an anisotropic Coulomb
law, decreasing away from the charge slower along the magnetic field and faster
across. In the infinite-magnetic-field limit the potential is confined to an
infinitely thin string passing though the charge parallel to the external
field. This is the first evidence for dimensional reduction in the photon
sector of quantum electrodynamics. The one-dimensional form of the potential on
the string is derived that includes a delta-function centered in the charge.
The nonrelativistic ground-state energy of a hydrogenlike atom is found with
its use and shown not to be infinite in the infinite-field limit, contrary to
what was commonly accepted before, when the vacuum polarization had been
ignored. These results may be useful for studying properties of matter at the
surface of extremely magnetized neutron stars.Comment: 45 pages, 6 figures, accepted to Phys. Rev.
- …