2,328 research outputs found
On the Discovery of Monocular Rivalry by Tscherning in 1898:Translation and Review
Monocular rivalry was named by Breese in 1899. He made prolonged observation of superimposed orthogonal gratings; they fluctuated in clarity with either one or the other grating occasionally being visible alone. A year earlier, Tscherning observed similar fluctuations with a grid of vertical and horizontal lines and with other stimuli; we draw attention to his prior account. Monocular rivalry has since been shown to occur with a wide variety of superimposed patterns with several independent rediscoveries of it. We also argue that Helmholtz described some phenomenon other than monocular rivalry in 1867
Population III star formation in a Lambda CDM universe, I: The effect of formation redshift and environment on protostellar accretion rate
(abridged) We perform 12 extremely high resolution adaptive mesh refinement
cosmological hydrodynamic simulations of Population III star formation in a
Lambda CDM universe, varying the box size and large-scale structure, to
understand systematic effects in the formation of primordial protostellar
cores. We find results that are qualitatively similar to those observed
previously. We observe that the threshold halo mass for formation of a
Population III protostar does not evolve significantly with time in the
redshift range studied (33 > z > 19) but exhibits substantial scatter due to
different halo assembly histories: Halos which assembled more slowly develop
cooling cores at lower mass than those that assemble more rapidly, in agreement
with Yoshida et al. (2003). We do, however, observe significant evolution in
the accretion rates of Population III protostars with redshift, with objects
that form later having higher maximum accretion rates, with a variation of two
orders of magnitude (10^-4 - 10^-2 Msolar/year). This can be explained by
considering the evolving virial properties of the halos with redshift and the
physics of molecular hydrogen formation at low densities. Our result implies
that the mass distribution of Population III stars inferred from their
accretion rates may be broader than previously thought, and may evolve with
redshift. Finally, we observe that our collapsing protostellar cloud cores do
not fragment, consistent with previous results, which suggests that Population
III stars which form in halos of mass 10^5 - 10^6 Msun always form in
isolation.Comment: Accepted by The Astrophysical Journal. Some minor changes. 65 pages,
3 tables, 21 figures (3 color). To appear in January 1, 2007 issu
Strategies from A Multi-National Sample of Electroconvulsive Therapy (ECT) Services: Managing Anesthesia for ECT during the COVID-19 Pandemic
Electroconvulsive therapy (ECT) is important in the management of severe, treatment-resistant, and life-threatening psychiatric illness. Anesthesia supports the clinical efficacy and tolerability of ECT. The COVID-19 pandemic has significantly disrupted ECT services, including anesthesia. This study documents strategies for managing ECT anesthesia during the pandemic. Data were collected between March and November 2021, using a mixed-methods, cross-sectional, electronic survey. Clinical directors in ECT services, their delegates, and anesthetists worldwide participated. One hundred and twelve participants provided quantitative responses to the survey. Of these, 23.4% were anesthetists, and the remainder were ECT clinical directors. Most participants were from Australia, New Zealand, North America, and Europe. Most were located in a public hospital, in a metropolitan region, and in a ‘medium/high-risk’ COVID-19 hotspot. Half of the participants reported their services made changes to ECT anesthetic technique during the pandemic. Services introduced strategies associated with anesthetic induction, ventilation, use of laryngeal mask airways, staffing, medications, plastic barriers to separate staff from patients, and the location of extubation and recovery. This is the first multi-national, mixed-methods study to investigate ECT anesthesia practices during the COVID-19 pandemic. The results are vital to inform practice during the next waves of COVID-19 infection, ensuring patients continue to receive ECT
Genetic resistance determinants to fusidic acid and chlorhexidine in variably susceptible staphylococci from dogs
Abstract
Background
Concern exists that frequent use of topically-applied fusidic acid (FA) and chlorhexidine (CHX) for canine pyoderma is driving clinically relevant resistance, despite rare description of FA and CHX genetic resistance determinants in canine-derived staphylococci. This study aimed to determine minimum inhibitory concentrations (MICs) and investigate presence of putative resistance determinants for FA and CHX in canine-derived methicillin-resistant (MR) and -susceptible (MS) staphylococci. Plasmid-mediated resistance genes (fusB, fusC, fusD, qacA/B, smr; PCR) and MICs (agar dilution) of FA and CHX were investigated in 578 staphylococci (50 MR S. aureus [SA], 50 MSSA, 259 MR S. pseudintermedius [SP], 219 MSSP) from Finland, U.S.A., North (NUK) and South-East U.K. (SEUK) and Germany. In all isolates with FA MIC ≥64 mg/L (n = 27) fusA and fusE were amplified and sequenced.
Results
FA resistance determinants (fusA mutations n = 24, fusB n = 2, fusC n = 36) were found in isolates from all countries bar U.S.A. and correlated with higher MICs (≥1 mg/L), although 4 SP isolates had MICs of 0.06 mg/L despite carrying fusC. CHX MICs did not correlate with qacA/B (n = 2) and smr (n = 5), which were found in SEUK SA, and SP from NUK and U.S.A.
Conclusions
Increased FA MICs were frequently associated with fusA mutations and fusC, and this is the first account of fusB in SP. Despite novel description of qacA/B in SP, gene presence did not correlate with CHX MIC. Selection pressure from clinical use might increase prevalence of these genetic determinants, but clinical significance remains uncertain in relation to high skin concentrations achieved by topical therapy
Height dependent molecular trapping in stacked cyclic porphyrin nanorings
Stacked layers of cyclic porphyrin nanorings constitute nanoscale receptacles with variable height and diameter which preferentially adsorb sublimed molecules. Using scanning tunnelling microscopy we determine the filling capacity of these nanoring traps, and the dependence of adsorbate capture on stack height and diameter
Interesting magnetic properties of FeCoSi alloys
Solid solution between nonmagnetic narrow gap semiconductor FeSi and
diamagnetic semi-metal CoSi gives rise to interesting metallic alloys with
long-range helical magnetic ordering, for a wide range of intermediate
concentration. We report various interesting magnetic properties of these
alloys, including low temperature re-entrant spin-glass like behaviour and a
novel inverted magnetic hysteresis loop. Role of Dzyaloshinski-Moriya
interaction in the magnetic response of these non-centrosymmetric alloys is
discussed.Comment: 11 pages and 3 figure
Multi-component measurements of the Jefferson Lab energy recovery linac electron beam using optical transition and diffraction radiation
High brightness electron accelerators, such as energy recovery linacs (ERL),
often have complex particle distributions that can create difficulties in beam
transport as well as matching to devices such as wigglers used to generate
radiation from the beam. Optical transition radiation (OTR), OTR interferometry
(OTRI) and optical diffraction-transition radiation interferometry (ODTRI) have
proven to be effective tools for diagnosing both the spatial and angular
distributions of charged particle beams. OTRI and ODTRI have been used to
measure rms divergences and optical transverse phase space mapping has been
demonstrated using OTRI. In this work we present the results of diagnostic
experiments using OTR and ODR conducted at the Jefferson Laboratory 115 MeV ERL
which show the presence of two separate components within the spatial and
angular distributions of the beam. By assuming a correlation between the
spatial and angular features we estimate an rms emittance value for each of the
two components.Comment: 25 pages, 10 figures; accepted for publication in PRSTAB; minor
formatting errors correcte
Radiation Hydrodynamical Instabilities in Cosmological and Galactic Ionization Fronts
Ionization fronts, the sharp radiation fronts behind which H/He ionizing
photons from massive stars and galaxies propagate through space, were
ubiquitous in the universe from its earliest times. The cosmic dark ages ended
with the formation of the first primeval stars and galaxies a few hundred Myr
after the Big Bang. Numerical simulations suggest that stars in this era were
very massive, 25 - 500 solar masses, with H II regions of up to 30,000
light-years in diameter. We present three-dimensional radiation hydrodynamical
calculations that reveal that the I-fronts of the first stars and galaxies were
prone to violent instabilities, enhancing the escape of UV photons into the
early intergalactic medium (IGM) and forming clumpy media in which supernovae
later exploded. The enrichment of such clumps with metals by the first
supernovae may have led to the prompt formation of a second generation of
low-mass stars, profoundly transforming the nature of the first protogalaxies.
Cosmological radiation hydrodynamics is unique because ionizing photons coupled
strongly to both gas flows and primordial chemistry at early epochs,
introducing a hierarchy of disparate characteristic timescales whose relative
magnitudes can vary greatly throughout a given calculation. We describe the
adaptive multistep integration scheme we have developed for the self-consistent
transport of both cosmological and galactic ionization fronts.Comment: 6 pages, 4 figures, accepted for proceedings of HEDLA2010, Caltech,
March 15 - 18, 201
- …