4,129 research outputs found
Pairing Symmetry in Iron-Pnictide Superconductor KFeAs
The pairing symmetry is one of the major issues in the study of iron-based
superconductors. We adopt a low-energy effective kinetic model based on the
first-principles band structure calculations combined with the -
model for KFeAs, the phase diagram of pairing symmetries is
constructed. Putting the values of and of the - model
obtained by the first-principles calculations into this phase diagram, we find
that the pairing symmetry for KFeAs is a nodal -wave in the
folded Brillouin zone with two iron atoms per unit cell. This is in good
agreement with experiments observed a nodal order parameter.Comment: 5 pages, 4 figures (The pairing symmetry is dependent on choosing an
effective tight-binding model. In the publication version, we adopt a
ten-orbital model by using the maximally localized Wannier functions based on
the first-principles band structure calculations, and give an s-wave pairing
for KFeAs
Status of the High Field Cable Test Facility at Fermilab
Fermi National Accelerator Laboratory (FNAL) and Lawrence Berkeley National
Laboratory (LBNL) are building a new High Field Vertical Magnet Test Facility
(HFVMTF) for testing superconducting cables in high magnetic field. The
background magnetic field of 15 T in the HFVMTF will be produced by a magnet
provided by LBNL. The HFVMTF is jointly funded by the US DOE Offices of
Science, High Energy Physics (HEP), and Fusion Energy Sciences (FES), and will
serve as a superconducting cable test facility in high magnetic fields and a
wide range of temperatures for HEP and FES communities. This facility will also
be used to test high-field superconducting magnet models and demonstrators,
including hybrid magnets, produced by the US Magnet Development Program (MDP).
The paper describes the status of the facility, including construction,
cryostat designs, top and lambda plates, and systems for powering, and quench
protection and monitoring
Technical design and performance of the NEMO3 detector
The development of the NEMO3 detector, which is now running in the Frejus
Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun
more than ten years ago. The NEMO3 detector uses a tracking-calorimeter
technique in order to investigate double beta decay processes for several
isotopes. The technical description of the detector is followed by the
presentation of its performance.Comment: Preprint submitted to Nucl. Instrum. Methods A Corresponding author:
Corinne Augier ([email protected]
Smad4 promotes diabetic nephropathy by modulating glycolysis and OXPHOS
Diabetic nephropathy (DN) is the leading cause of end‐stage kidney disease. TGF‐β1/Smad3 signalling plays a major pathological role in DN; however, the contribution of Smad4 has not been examined. Smad4 depletion in the kidney using anti‐Smad4 locked nucleic acid halted progressive podocyte damage and glomerulosclerosis in mouse type 2 DN, suggesting a pathogenic role of Smad4 in podocytes. Smad4 is upregulated in human and mouse podocytes during DN. Conditional Smad4 deletion in podocytes protects mice from type 2 DN, independent of obesity. Mechanistically, hyperglycaemia induces Smad4 localization to mitochondria in podocytes, resulting in reduced glycolysis and oxidative phosphorylation and increased production of reactive oxygen species. This operates, in part, via direct binding of Smad4 to the glycolytic enzyme PKM2 and reducing the active tetrameric form of PKM2. In addition, Smad4 interacts with ATPIF1, causing a reduction in ATPIF1 degradation. In conclusion, we have discovered a mitochondrial mechanism by which Smad4 causes diabetic podocyte injury
Dark energy problem: from phantom theory to modified Gauss-Bonnet gravity
The solution of dark energy problem in the models without scalars is
presented. It is shown that late-time accelerating cosmology may be generated
by the ideal fluid with some implicit equation of state. The universe evolution
within modified Gauss-Bonnet gravity is considered. It is demonstrated that
such gravitational approach may predict the (quintessential, cosmological
constant or transient phantom) acceleration of the late-time universe with
natural transiton from deceleration to acceleration (or from non-phantom to
phantom era in the last case).Comment: LaTeX 8 pages, prepared for the Proceedings of QFEXT'05, minor
correctons, references adde
Charge separation relative to the reaction plane in Pb-Pb collisions at TeV
Measurements of charge dependent azimuthal correlations with the ALICE
detector at the LHC are reported for Pb-Pb collisions at TeV. Two- and three-particle charge-dependent azimuthal correlations in
the pseudo-rapidity range are presented as a function of the
collision centrality, particle separation in pseudo-rapidity, and transverse
momentum. A clear signal compatible with a charge-dependent separation relative
to the reaction plane is observed, which shows little or no collision energy
dependence when compared to measurements at RHIC energies. This provides a new
insight for understanding the nature of the charge dependent azimuthal
correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at TeV
The inclusive transverse momentum () distributions of primary
charged particles are measured in the pseudo-rapidity range as a
function of event centrality in Pb-Pb collisions at
TeV with ALICE at the LHC. The data are presented in the range
GeV/ for nine centrality intervals from 70-80% to 0-5%.
The Pb-Pb spectra are presented in terms of the nuclear modification factor
using a pp reference spectrum measured at the same collision
energy. We observe that the suppression of high- particles strongly
depends on event centrality. In central collisions (0-5%) the yield is most
suppressed with at -7 GeV/. Above
GeV/, there is a significant rise in the nuclear modification
factor, which reaches for GeV/. In
peripheral collisions (70-80%), the suppression is weaker with almost independently of . The measured nuclear
modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/284
Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb
collisions at TeV at the Large Hadron Collider is
presented. We observe a growing trend with energy now not only for the
longitudinal and the outward but also for the sideward pion source radius. The
pion homogeneity volume and the decoupling time are significantly larger than
those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/388
- …