4,129 research outputs found

    Pairing Symmetry in Iron-Pnictide Superconductor KFe2_2As2_2

    Full text link
    The pairing symmetry is one of the major issues in the study of iron-based superconductors. We adopt a low-energy effective kinetic model based on the first-principles band structure calculations combined with the J1J_1-J2J_2 model for KFe2_2As2_2, the phase diagram of pairing symmetries is constructed. Putting the values of J1J_1 and J2J_2 of the J1J_1-J2J_2 model obtained by the first-principles calculations into this phase diagram, we find that the pairing symmetry for KFe2_2As2_2 is a nodal dxyd_{xy}-wave in the folded Brillouin zone with two iron atoms per unit cell. This is in good agreement with experiments observed a nodal order parameter.Comment: 5 pages, 4 figures (The pairing symmetry is dependent on choosing an effective tight-binding model. In the publication version, we adopt a ten-orbital model by using the maximally localized Wannier functions based on the first-principles band structure calculations, and give an s-wave pairing for KFe2_2As2_2

    Status of the High Field Cable Test Facility at Fermilab

    Get PDF
    Fermi National Accelerator Laboratory (FNAL) and Lawrence Berkeley National Laboratory (LBNL) are building a new High Field Vertical Magnet Test Facility (HFVMTF) for testing superconducting cables in high magnetic field. The background magnetic field of 15 T in the HFVMTF will be produced by a magnet provided by LBNL. The HFVMTF is jointly funded by the US DOE Offices of Science, High Energy Physics (HEP), and Fusion Energy Sciences (FES), and will serve as a superconducting cable test facility in high magnetic fields and a wide range of temperatures for HEP and FES communities. This facility will also be used to test high-field superconducting magnet models and demonstrators, including hybrid magnets, produced by the US Magnet Development Program (MDP). The paper describes the status of the facility, including construction, cryostat designs, top and lambda plates, and systems for powering, and quench protection and monitoring

    Technical design and performance of the NEMO3 detector

    Full text link
    The development of the NEMO3 detector, which is now running in the Frejus Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun more than ten years ago. The NEMO3 detector uses a tracking-calorimeter technique in order to investigate double beta decay processes for several isotopes. The technical description of the detector is followed by the presentation of its performance.Comment: Preprint submitted to Nucl. Instrum. Methods A Corresponding author: Corinne Augier ([email protected]

    Smad4 promotes diabetic nephropathy by modulating glycolysis and OXPHOS

    Get PDF
    Diabetic nephropathy (DN) is the leading cause of end‐stage kidney disease. TGF‐β1/Smad3 signalling plays a major pathological role in DN; however, the contribution of Smad4 has not been examined. Smad4 depletion in the kidney using anti‐Smad4 locked nucleic acid halted progressive podocyte damage and glomerulosclerosis in mouse type 2 DN, suggesting a pathogenic role of Smad4 in podocytes. Smad4 is upregulated in human and mouse podocytes during DN. Conditional Smad4 deletion in podocytes protects mice from type 2 DN, independent of obesity. Mechanistically, hyperglycaemia induces Smad4 localization to mitochondria in podocytes, resulting in reduced glycolysis and oxidative phosphorylation and increased production of reactive oxygen species. This operates, in part, via direct binding of Smad4 to the glycolytic enzyme PKM2 and reducing the active tetrameric form of PKM2. In addition, Smad4 interacts with ATPIF1, causing a reduction in ATPIF1 degradation. In conclusion, we have discovered a mitochondrial mechanism by which Smad4 causes diabetic podocyte injury

    Dark energy problem: from phantom theory to modified Gauss-Bonnet gravity

    Full text link
    The solution of dark energy problem in the models without scalars is presented. It is shown that late-time accelerating cosmology may be generated by the ideal fluid with some implicit equation of state. The universe evolution within modified Gauss-Bonnet gravity is considered. It is demonstrated that such gravitational approach may predict the (quintessential, cosmological constant or transient phantom) acceleration of the late-time universe with natural transiton from deceleration to acceleration (or from non-phantom to phantom era in the last case).Comment: LaTeX 8 pages, prepared for the Proceedings of QFEXT'05, minor correctons, references adde

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}= 2.76 TeV

    Get PDF
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta| < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388
    corecore